首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone marrow mesenchymal stem cell (BMSC)-derived exosomes have been found to enhance fracture healing. In addition, microRNAs contributing to the healing of various bone fractures have attracted widespread attention in recent years, but knowledge of the mechanisms by which they act is still very limited. In this study, we clarified the function of altered microRNA-19b (miR-19b) expression in BMSCs in fracture healing. We modulated miR-19b expression via mimics/inhibitors in BMSCs and via agomirs in mice to explore the effects of these changes on osteogenic factors, bone cell mineralization and the healing status of modeled fractures. Through gain- and loss-of function assays, the binding affinity between miR-19b and WWP1/Smurf2 was identified and characterized to explain the underlying mechanism involving the KLF5/β-catenin signaling pathway. miR-19b promoted the differentiation of human BMSCs into osteoblasts by targeting WWP1 and Smurf2. Overexpression of WWP1 or Smurf2 degraded the target protein KLF5 in BMSCs through ubiquitination to inhibit fracture healing. KLF5 knockdown delayed fracture healing by modulating the Wnt/β-catenin signaling pathway. Furthermore, miR-19b enhanced fracture healing via the KLF5/β-catenin signaling pathway by targeting WWP1 or Smurf2. Moreover, miR-19b was found to be enriched in BMSC-derived exosomes, and treatment with exosomes promoted fracture healing in vivo. Collectively, these results indicate that mesenchymal stem cell-derived exosomal miR-19b represses the expression of WWP1 or Smurf2 and elevates KLF5 expression through the Wnt/β-catenin signaling pathway, thereby facilitating fracture healing.Subject terms: Diseases, Biotechnology  相似文献   

2.
3.
A series of novel synthetic substituted benzo[d]oxazole-based derivatives (5a–5v) exerted neuroprotective effects on β-amyloid (Aβ)-induced PC12 cells as a potential approach for the treatment of Alzheimer’s disease (AD). In vitro studies show that most of the synthesized compounds were potent in reducing the neurotoxicity of Aβ25-35-induced PC12 cells at 5 μg/mL. We found that compound 5c was non-neurotoxic at 30 μg/mL and significantly increased the viability of Aβ25-35-induced PC12 cells at 1.25, 2.5 and 5 μg/mL. Western blot analysis showed that compound 5c promoted the phosphorylation of Akt and glycogen synthase kinase (GSK-3β) and decreased the expression of nuclear factor-κB (NF-κB) in Aβ25-35-induced PC12 cells. In addition, our findings demonstrated that compound 5c protected PC12 cells from Aβ25-35-induced apoptosis and reduced the hyperphosphorylation of tau protein, and decreased the expression of receptor for AGE (RAGE), β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1), inducible nitric oxide synthase (iNOS) and Bcl-2-associated X protein/B-cell lymphoma 2 (Bax/Bcl-2) via Akt/GSK-3β/NF-κB signaling pathway. In vivo studies suggest that compound 5c shows less toxicity than donepezil in the heart and nervous system of zebrafish.  相似文献   

4.
5.
6.
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease with multiple causes, characterized by excessive myofibrocyte aggregation and extracellular matrix deposition. Related studies have shown that transforming growth factor-β1 (TGF-β1) is a key cytokine causing fibrosis, promoting abnormal epithelial–mesenchymal communication and fibroblast-to-myofibroblast transition. Fedratinib (Fed) is a marketed drug for the treatment of primary and secondary myelofibrosis, targeting selective JAK2 tyrosine kinase inhibitors. However, its role in pulmonary fibrosis remains unclear. In this study, we investigated the potential effects and mechanisms of Fed on pulmonary fibrosis in vitro and in vivo. In vitro studies have shown that Fed attenuates TGF-β1- and IL-6-induced myofibroblast activation and inflammatory response by regulating the JAK2/STAT3 signaling pathway. In vivo studies have shown that Fed can reduce bleomycin-induced inflammation and collagen deposition and improve lung function. In conclusion, Fed inhibited inflammation and fibrosis processes induced by TGF-β1 and IL-6 by targeting the JAK2 receptor.  相似文献   

7.
Pathogenic conversion of Th17 cells into multifunctional helper T cells or Th1 cells contributes to the pathogenesis of autoimmune diseases; however, the mechanism regulating the plasticity of Th17 cells remains unclear. Here, we found that Th17 cells expressed latent TGF-β1 in a manner dependent on autocrine TGF-β1. By employing IL-17-producing cell-specific Tgfb1 conditional knockout and fate-mapping systems, we demonstrated that TGF-β1-deficient Th17 cells are relatively susceptible to becoming IFN-γ producers through IL-12Rβ2 and IL-27Rα upregulation. TGF-β1-deficient Th17 cells exacerbated tissue inflammation compared to TGF-β1-sufficient Th17 cells in adoptive transfer models of experimental autoimmune encephalomyelitis and colitis. Thus, TGF-β1 production by Th17 cells provides an essential autocrine signal for maintaining the stability and regulating the pathogenicity of Th17 cells in vivo.Subject terms: Autoimmunity, Neuroimmunology  相似文献   

8.
Pulmonary fibrosis is a severe and irreversible interstitial pulmonary disease with high mortality and few treatments. Magnesium lithospermate B (MLB) is a hydrosoluble component of Salvia miltiorrhiza and has been reported to have antifibrotic effects in other forms of tissue fibrosis. In this research, we studied the effects of MLB on pulmonary fibrosis and the underlying mechanisms. Our results indicated that MLB treatment (50 mg/kg) for seven days could attenuate bleomycin (BLM)-induced pulmonary fibrosis by reducing the alveolar structure disruption and collagen deposition in the C57 mouse model. MLB was also found to inhibit transforming growth factor-beta (TGF-β)-stimulated myofibroblastic transdifferentiation of human lung fibroblast cell line (MRC-5) cells and collagen production by human type II alveolar epithelial cell line (A549) cells, mainly by decreasing the expression of TGF-β receptor I (TGF-βRI) and regulating the TGF-β/Smad pathway. Further studies confirmed that the molecular mechanisms of MLB in BLM-induced pulmonary fibrosis mice were similar to those observed in vitro. In summary, our results demonstrated that MLB could alleviate experimental pulmonary fibrosis both in vivo and in vitro, suggesting that MLB has great potential for pulmonary fibrosis treatment.  相似文献   

9.
10.
11.
ATF3 has been reported to be dysregulated in various cancers and involved in various steps of tumorigenesis. However, the mechanisms underlying the abnormal expression of ATF3 and its biological function in gastric cancer (GC) have not been well investigated. Here, we report ATF3 as one of the key regulators of GC development and progression. Patients with low ATF3 expression had shorter survival and a poorer prognosis. In vitro and in vivo assays investigating ATF3 alterations revealed a complex integrated phenotype that affects cell growth and migration. Strikingly, high-throughput sequencing and microarray analysis of cells with ATF3 silencing or of ATF3-low GC tissues indicated alterations in the Wnt signaling pathway, focal adhesions and adherens junctions. Mechanistically, the expression of β-catenin and cell migration inducing hyaluronidase 1 (CEMIP) was significantly upregulated in GC cells with downregulated ATF3, which was synergistically repressed by the β-catenin/TCF3 signaling axis and noncoding RNA miR-17-5p and HOXA11-AS. In addition, we found that WDR5 expression was promoted by TCF3 and is involved in miR-17-5p and HOXA11-AS activation in GC cells. Taken together, our findings revealed the mechanism of ATF3 downregulation and its biological role in regulating the expression of Wnt signaling-related genes during GC progression, suggesting new informative biomarkers of malignancy and therapeutic directions for GC patients.Subject terms: Gastric cancer, Experimental models of disease  相似文献   

12.
Articular cartilage (AC) damage is quite common, but due to AC’s poor self-healing ability, the damage can easily develop into osteoarthritis (OA). To solve this problem, we developed a microsphere/hydrogel system that provides two growth factors that promote cartilage repair: transforming growth factor-β3 (TGF-β3) to enhance cartilage tissue formation and ghrelin synergy TGF-β to significantly enhance the chondrogenic differentiation. The hydrogel and microspheres were characterized in vitro, and the biocompatibility of the system was verified. Double emulsion solvent extraction technology (w/o/w) is used to encapsulate TGF-β3 and ghrelin into microspheres, and these microspheres are encapsulated in a hydrogel to continuously release TGF-β3 and ghrelin. According to the chondrogenic differentiation ability of mesenchymal stem cells (MSCs) in vitro, the concentrations of the two growth factors were optimized to promote cartilage regeneration.  相似文献   

13.
Marine collagen peptides have high potential in promoting skin wound healing. This study aimed to investigate wound healing activity of collagen peptides derived from Sipunculus nudus (SNCP). The effects of SNCP on promoting healing were studied through a whole cortex wound model in mice. Results showed that SNCP consisted of peptides with a molecular weight less than 5 kDa accounted for 81.95%, rich in Gly and Arg. SNCP possessed outstanding capacity to induce human umbilical vein endothelial cells (HUVEC), human immortalized keratinocytes (HaCaT) and human skin fibroblasts (HSF) cells proliferation and migration in vitro. In vivo, SNCP could markedly improve the healing rate and shorten the scab removal time, possessing a scar-free healing effect. Compared with the negative control group, the expression level of tumor necrosis factor-α, interleukin-1β and transforming growth factor-β1 (TGF-β1) in the SNCP group was significantly down-regulated at 7 days post-wounding (p < 0.01). Moreover, the mRNA level of mothers against decapentaplegic homolog 7 (Smad7) in SNCP group was up-regulated (p < 0.01); in contrast, type II TGF-β receptors, collagen I and α-smooth muscle actin were significantly down-regulated at 28 days (p < 0.01). These results indicate that SNCP possessed excellent activity of accelerating wound healing and inhibiting scar formation, and its mechanism was closely related to reducing inflammation, improving collagen deposition and recombination and blockade of the TGF-β/Smads signal pathway. Therefore, SNCP may have promising clinical applications in skin wound repair and scar inhibition.  相似文献   

14.
Splenectomy has been reported to improve liver fibrosis in patients with cirrhosis and hypersplenism. However, the mechanisms remain unclear. Tumor necrosis factor superfamily 14 (TNFSF14; also known as LIGHT) is highly expressed in the context of fibrosis and promotes disease progression in patients with fibrotic diseases such as pulmonary and skin fibrosis. Here, we determined whether splenectomy controls the production of LIGHT to improve liver fibrosis. Splenectomy reduced serum LIGHT levels in cirrhotic patients with hypersplenism and a ConA-induced liver fibrosis mouse model. Blocking LIGHT resulted in the downregulation of TGF-β1 in RAW264.7 cells. LIGHT treatment of RAW264.7 and JS1 cells in coculture regulated transforming growth factor-β1 (TGF-β1) expression through the activation of JNK signaling. Small interfering RNA-mediated silencing of lymphotoxin β receptor (LTβR) in macrophages resulted in pronounced decreases in the levels of fibrosis and αSMA in JS1 cells. These results indicated that LIGHT bound to LTβR and drove liver fibrosis in vitro. Blocking TGF-β1 abolished the effect of LIGHT in vitro. Furthermore, the administration of recombinant murine LIGHT protein-induced liver fibrosis with splenectomy, while blocking LIGHT without splenectomy improved liver fibrosis in vivo, revealing that the decrease in fibrosis following splenectomy was directly related to reduced levels of LIGHT. Thus, high levels of LIGHT derived from the spleen and hepatic macrophages activate JNK signaling and lead to increased TGF-β1 production in hepatic macrophages. Splenectomy attenuates liver fibrosis by decreasing the expression of LIGHT.Subject terms: Tumour-necrosis factors, Liver fibrosis, Hepatic stellate cells, Liver cirrhosis, Experimental models of disease  相似文献   

15.
The role of Kupffer cells (KCs) in liver regeneration is complicated and controversial. To investigate the distinct role of F4/80+ KCs at the different stages of the regeneration process, two-thirds partial hepatectomy (PHx) was performed in mice to induce physiological liver regeneration. In pre- or post-PHx, the clearance of KCs by intraperitoneal injection of the anti-F4/80 antibody (α-F4/80) was performed to study the distinct role of F4/80+ KCs during the regenerative process. In RNA sequencing of isolated F4/80+ KCs, the initiation phase was compared with the progression phase. Immunohistochemistry and immunofluorescence staining of Ki67, HNF-4α, CD-31, and F4/80 and Western blot of the TGF-β2 pathway were performed. Depletion of F4/80+ KCs in pre-PHx delayed the peak of hepatocyte proliferation from 48 h to 120 h, whereas depletion in post-PHx unexpectedly led to persistent inhibition of hepatocyte proliferation, indicating the distinct role of F4/80+ KCs in the initiation and progression phases of liver regeneration. F4/80+ KC depletion in post-PHx could significantly increase TGF-β2 serum levels, while TGF-βRI partially rescued the impaired proliferation of hepatocytes. Additionally, F4/80+ KC depletion in post-PHx significantly lowered the expression of oncostatin M (OSM), a key downstream mediator of interleukin-6, which is required for hepatocyte proliferation during liver regeneration. In vivo, recombinant OSM (r-OSM) treatment alleviated the inhibitory effect of α-F4/80 on the regenerative progression. Collectively, F4/80+ KCs release OSM to inhibit TGF-β2 activation, sustaining hepatocyte proliferation by releasing a proliferative brake.  相似文献   

16.
Antimicrobial resistance is a dramatic global threat; however, the slow progress of new antibiotic development has impeded the identification of viable alternative strategies. Natural antioxidant-based antibacterial approaches may provide potent therapeutic abilities to effectively block resistance microbes’ pathways. While essential oils (EOs) have been reported as antimicrobial agents, its application is still limited ascribed to its low solubility and stability characters; additionally, the related biomolecular mechanisms are not fully understood. Hence, the study aimed to develop a nano-gel natural preparation with multiple molecular mechanisms that could combat bacterial resistance in an acne vulgaris model. A nano-emulgel of thyme/clove EOs (NEG8) was designed, standardized, and its antimicrobial activity was screened in vitro and in vivo against genetically identified skin bacterial clinical isolates (Pseudomonas stutzeri, Enterococcus faecium and Bacillus thuringiensis). As per our findings, NEG8 exhibited bacteriostatic and potent biofilm inhibition activities. An in vivo model was also established using the commercially available therapeutic, adapalene in contra genetically identified microorganism. Improvement in rat behavior was reported for the first time and NEG8 abated the dermal contents/protein expression of IGF-1, TGF-β/collagen, Wnt/β-catenin, JAK2/STAT-3, NE, 5-HT, and the inflammatory markers; p(Ser536) NF-κBp65, TLR-2, and IL-6. Moreover, the level of dopamine, protective anti-inflammatory cytokine, IL-10 and PPAR-γ protein were enhanced, also the skin histological structures were improved. Thus, NEG8 could be a future potential topical clinical alternate to synthetic agents, with dual merit mechanism as bacteriostatic antibiotic action and non-antibiotic microbial pathway inhibitor.  相似文献   

17.
Neointimal proliferation after vascular injury is a key mechanism of restenosis, a major cause of percutaneous transluminal angioplasty failure and artery bypass occlusion. Emodin, an anthraquinone with multiple physiological activities, has been reported to inhibit proliferation of vascular smooth muscle cells (VSMCs) that might cause intimal arterial thickening. Thus, in this study, we established a rat model of balloon-injured carotid artery and investigated the therapeutic effect of emodin and its underlying mechanism. Intimal thickness was analyzed by hematoxylin and eosin staining. Expression of Wnt4, dvl-1, β-catenin and collagen was determined by immunohistochemistry and/or western blotting. The proliferation of VSMC was evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and electron microscopy. MicroRNA levels were quantified by real-time quantitative PCR. Emodin relieved injury-induced artery intimal thickness. Results of western blots and immunohistochemistry showed that emodin suppressed expression of signaling molecules Wnt4/Dvl-1/β-catenin as well as collagen protein in the injured artery. In addition, emodin enhanced expression of an artery injury-related microRNA, miR-126. In vitro, MTT assay showed that emodin suppressed angiotensin II (AngII)-induced proliferation of VSMCs. Emodin reversed AngII-induced activation of Wnt4/Dvl-1/β-catenin signaling by increasing expression of miR-126 that was strongly supported by transfection of mimic or inhibitor for miR-126. Emodin prevents intimal thickening via Wnt4/Dvl-1/β-catenin signaling pathway mediated by miR-126 in balloon-injured carotid artery of rats.  相似文献   

18.
Idiopathic pulmonary fibrosis (IPF) is a progressive, life-threatening lung disease characterized by the proliferation of myofibroblasts and deposition of extracellular matrix that results in irreversible distortion of the lung structure and the formation of focal fibrosis. The molecular mechanism of IPF is not fully understood, and there is no satisfactory treatment. However, most studies suggest that abnormal activation of transforming growth factor-β1 (TGF-β1) can promote fibroblast activation and epithelial to mesenchymal transition (EMT) to induce pulmonary fibrosis. Deglycosylated azithromycin (Deg-AZM) is a compound we previously obtained by removing glycosyls from azithromycin; it was demonstrated to exert little or no antibacterial effects. Here, we discovered a new function of Deg-AZM in pulmonary fibrosis. In vivo experiments showed that Deg-AZM could significantly reduce bleomycin-induced pulmonary fibrosis and restore respiratory function. Further study revealed the anti-inflammatory and antioxidant effects of Deg-AZM in vivo. In vitro experiments showed that Deg-AZM inhibited TGF-β1 signaling, weakened the activation and differentiation of lung fibroblasts, and inhibited TGF-β1-induced EMT in alveolar epithelial cells. In conclusion, our findings show that Deg-AZM exerts antifibrotic effects by inhibiting TGF-β1-induced myofibroblast activation and EMT.  相似文献   

19.
Osteoarthritis is characterized by structural alteration of joints. Fibrosis of the synovial tissue is often detected and considered one of the main causes of joint stiffness and pain. In our earlier proteomic study, increased levels of vitronectin (VTN) fragment (amino acids 381–397) were observed in the serum of osteoarthritis patients. In this work, the affinity of this fragment for integrins and its putative role in TGF-β1 activation were investigated. A competition study determined the interaction of VTN(381–397 a.a.) with αVβ6 integrin. Subsequently, the presence of αVβ6 integrin was substantiated on primary human fibroblast-like synoviocytes (FLSs) by western blot and flow cytometry. By immunohistochemistry, β6 was detected in synovial membranes, and its expression showed a correlation with tissue fibrosis. Moreover, β6 expression was increased under TGF-β1 stimulation; hence, a TGF-β bioassay was applied. We observed that αVβ6 could mediate TGF-β1 bioavailability and that VTN(381–397 a.a.) could prevent TGF-β1 activation by interacting with αVβ6 in human FLSs and increased α-SMA. Finally, we analyzed serum samples from healthy controls and patients with osteoarthritis and other rheumatic diseases by nano-LC/Chip MS–MS, confirming the increased expression of VTN(381–397 a.a.) in osteoarthritis as well as in lupus erythematosus and systemic sclerosis. These findings corroborate our previous observations concerning the overexpression of VTN(381–397 a.a.) in osteoarthritis but also in other rheumatic diseases. This fragment interacts with αVβ6 integrin, a receptor whose expression is increased in FLSs from the osteoarthritic synovial membrane and that can mediate the activation of the TGF-β1 precursor in human FLSs.Subject terms: Osteoarthritis, Cell culture  相似文献   

20.
Growth factor-stimulated phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine (PC), generating phosphatidic acid (PA) which may act as a second messenger during cell proliferation and survival. Therefore, PLD is believed to play an important role in tumorigenesis. In this study, a potential mechanism for PLD-mediated tumorigenesis was explored. Ectopic expression of PLD1 or PLD2 in human glioma U87 cells increased the expression of hypoxia-inducible factor-1α (HIF-1α) protein. PLD-induced HIF-1 activation led to the secretion of vascular endothelial growth factor (VEGF), a HIF-1 target gene involved in tumorigenesis. PLD induction of HIF-1α was significantly attenuated by 1-butanol which blocks PA production by PLD, and PA per se was able to elevate HIF-1α protein level. Inhibition of mTOR, a PA-responsive kinase, reduced the levels of HIF-1α and VEGF in PLD-overexpressed cells. Epidermal growth factor activated PLD and increased the levels of HIF-1α and VEGF in U87 cells. A specific PLD inhibitor abolished expression of HIF-1α and secretion of VEGF. PLD may utilize HIF-1-VEGF pathway for PLD-mediated tumor cell proliferation and survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号