首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermosolutal instability of a plasma in porous medium is considered in the presence of finite Larmor radius effect. The finite Larmor radius, stable solute gradient and magnetic field introduce oscillatory modes in the systems which were nonexistent in their absence. For stationary convection, the finite Larmor radius and stable solute gradient have stabilizing effects on the thermosolutal instability in porous medium. In presence of finite Larmor radius effect, the medium permeability has a destabilizing (or stabilizing) effect and the magnetic field has a stabilizing (or destabilizing) effect under certain condition whereas in the absence of finite Larmor radius effect, the medium permeability and the magnetic field have destabilizing and stabilizing effects, respectively, on thermosolutal instability of a plasma in porous medium. The sufficient conditions for nonexistence of overstability are obtained.The financial assistance to Mr. Sunil in the form of Senior Research Fellowship of the Council of Scientific and Industrial Research (CSIR), New Delhi is gratefully acknowledged.  相似文献   

2.
The thermal instability of a layer of Rivlin-Ericksen elastico-viscous fluid in porous medium acted on by a uniform magnetic field is considered. For stationary convection, Rivlin-Ericksen elastico-viscous fluid behaves like a Newtonian fluid. The magnetic field is found to have stabilizing effect whereas medium permeability has destabilizing effect. The magnetic field introduces oscillatory modes in the system, A sufficient condition for the non-existence of overstability is also obtained.  相似文献   

3.
The instability of a stratified rotating fluid layer through porous medium in the presence of an inhomogeneous magnetic field is investigated. For exponentially varying density and magnetic field variations, an eigenvalue solution has been obtained. The dispersion relation is obtained and discussed for both the stable and unstable stratifications separately. It is found, for non-porous medium, that for the stable mode of disturbance, the system is always stable, and for the unstable mode of disturbance, it is stabilized only under a certain condition for the Alfvèn velocity, rotation and the stratification parameter. In the latter case, both rotation and magnetic field are found to have a stabilizing effect on the growth rate. In the presence of porous medium, it is found, for real growth rate n, that the inhomogeneous magnetic field has always a stabilizing effect on the considered system. It is found also, for complex growth rate n, that the system is stable for the stable stratification case, while it is stable or unstable for the unstable case under a certain wavenumbers range depending on the Alfvèn velocity and the stratification parameter. The presence of the magnetic field is found to stabilize a certain wavenumbers band, whereas the system was unstable for all wavenumbers in the absence of the magnetic field. Also, the presence of porous medium is found to hide the stabilizing effect played by rotation on the considered system for non-porous medium, i.e., rotation does not have any significant effect on the stability criterion in this case.  相似文献   

4.
The effect of variable gravitational field on thermal instability of a rotating fluid layer in the presence of magnetic field in porous medium is investigated. It is found that the system is stable when gravity is decreasing upwards. The principle of exchange of stability is valid in the absence of rotation and magnetic field when gravity increases upwards. In the stationary convection, rotation has stabilizing or destabilizing effect depending upon whether gravity is increasing or decreasing upwards. The medium permeability and magnetic field have stabilizing or destabilizing effect depending upon condition.  相似文献   

5.
A layer of electrically conducting couple-stress fluid heated from below in porous medium in presence of magnetic field is considered. For stationary convection, the couplestress and magnetic field postpone the onset of convection whereas the medium permeability hastens the onset of convection. The magnetic field introduces oscillatory modes in the system which were non-existent in its absence. A sufficient condition for the non-existence of overstability is obtained.  相似文献   

6.
The thermosolutal instability of a plasma is studied to include the effects of coriolis forces and the finiteness of ion Larmor Radius in the presence of transverse magnetic field. It is observed that the effect of rotation is destabilizing only in a typical case. However, the F. L. R. and stable solute gradient have stabilizing effects on stationary convection irrespective of the presence of coriolis forces.  相似文献   

7.
The thermal instability of electrically conducting micropolar fluids heated from below in the presence of uniform vertical magnetic field in porous medium has been considered. It is found that the presence of coupling between thermal and micropolar effects, magnetic field and permeability may introduce oscillatory motions in the system. The increase in Rayleigh number for stationary convection and decrease in Rayleigh number for overstability with the increase in magnetic field is depicted graphically. Also the Rayleigh number is found to decrease with the increase in permeability.  相似文献   

8.
利用线性稳定性方法研究了外加磁场对二元合金凝固过程中糊状层稳定性的影响,且模型同时考虑了温度场、浓度场和流动的耦合作用.利用计算得出的色散关系式分析了磁场对糊状层稳定性的影响,其中包括直接模式和振荡模式.给出了不同情况下外加磁场对糊状层稳定性的影响,发现磁洛伦兹力可以减小由浮力引起的失稳效应.振荡模式下外加磁场对糊状层产生稳定作用,但直接模式下外加磁场对糊状层的稳定作用具有不确定性.本文所给出结果为工业中利用外加磁场改善产品的质量提供了重要的理论参考.  相似文献   

9.
The effect of fine dust (suspended particles) is considered on the thermosolutal convection. The principle of exchange of stabilities is satisfied for thermal Rayleigh number greater than or equal to solute Rayleigh number. If the solute Rayleigh number exceeds the thermal Rayleigh number, the oscillatory modes may come into play. The effect of stable solute gradient has a stabilizing effect whereas the effect of suspended particles is to destabilize the layer. The effect of a uniform rotation is also considered and is found to have a stabilizing effect in the presence of suspended particles on the thermosolutal convection.  相似文献   

10.
R C Sharma  K C Sharma 《Pramana》1978,10(3):267-272
The thermal instability of a finitely conducting hydromagnetic composite and compressible medium is studied to include the frictional effects with neutrals. The effect of compressibility is found to be stabilizing. In contrast to the nonoscillatory modes for (C p/g)β > 1 in the absence of a magnetic field;C v, β andg being specific heat at constant pressure, uniform adverse temperature gradient and acceleration due to gravity respectively, the presence of magnetic field introduces oscillatory modes in the system. The overstable case is also discussed. The magnetic field is found to have a stabilizing effect on the system for (C p/g)β > 1.  相似文献   

11.
The thermosolutal convection in a layer of Maxwellian viscoelastic fluid heated and soluted from below in porous medium is considered. The effects of uniform magnetic field and uniform rotation on the thermosolutal convection are also considered. For stationary convection, the Maxwellian viscoelastic fluid behaves like a Newtonian fluid. The sufficient conditions for the nonexistence of overstability are obtained. The critical Rayleigh number is found to increase with the increase in magnetic field, rotation and stable solute gradient.  相似文献   

12.
The effect of finite Larmor radius, magnetic field, rotation and variable gravitational field on thermal instability of fluid layer in porous medium is investigated. It is found that the principle of exchange of stability is valid in the absence of magnetic field and rotation. The system is stable/unstable depending upon certain conditions in the presence of rotation, magnetic field and medium permeability. The system is stable in presence of finite Larmor radius. The above work has been carried out under research project financed by University Grants Commission New Delhi (India) and the authors are grateful to University Grants Commission for their financial support.  相似文献   

13.
The instability of the plane interface between two viscoelastic (Oldroydian) superposed conducting fluids permeated with suspended particles in porous medium is studied when the whole system is immersed in a uniform magnetic field. The dispersion relation for the Oldroydian viscoelastic fluid is obtained which also yields dispersion relations for Maxwellian and Newtonian fluids in special cases, in the presence of suspended particles in porous medium in hydromagnelics. The system is found to be stable for potentially stable case. The presence of magnetic field stabilizes certain wave number band whereas the system was unstable for all wave numbers in the absence of magnetic field, for the potentially unstable configuration. The growth rates increase (for certain wave numbers) and decrease (for other wave numbers) with the increase in stress relaxation time, strain retardation time, suspended particles number density and medium permeability.  相似文献   

14.
R C Sharma  J N Misra 《Pramana》1987,29(1):79-86
The effects of compressibility, finite Larmor radius (FLR) and Hall currents are considered on the thermal instability of a plasma in the presence of a uniform horizontal magnetic field. For stationary convection, the compressibility has a stabilizing effect whereas FLR and Hall currents have stabilizing as well as destabilizing effects. For (C pβ/g)<1, the system is stable. The magnetic field, FLR and Hall currents introduce oscillatory modes in the system for (C pβ/g)>1.  相似文献   

15.
The magneto-gravitational instability of an infinite homogeneous, finitely conducting, viscous rotating plasma through porous medium is investigated in view of its relevance to certain stellar atmospheres. The dispersion relation has been obtained from the relevant linearized perturbation equations of the problem and it has been discussed in the case of rotation parallel and perpendicular to the direction of magnetic field separately. The longitudinal and transverse modes of wave propagation are discussed in each case of rotation. It is found that the combined effect of viscosity, finite conductivity, rotation and the medium porosity does not essentially change the Jeans' criterion of gravitational instability. It is also shown that for the propagation transverse to the direction of magnetic field. the finite conductivity destabilizes the wave number band which is stable in the limit of infinite conductivity when the medium is considered inviscid.  相似文献   

16.
The instability of the plane interface between two uniform, superposed, and streaming fluids permeated with suspended particles through porous medium is considered. The effect of a uniform horizontal magnetic field on the problem is also studied. In the absence of surface tension, perturbations transverse to the direction of streaming are found to be unaffected by the presence of streaming if perturbations in the direction of streaming are ignored, whereas for perturbations in all other directions there exists instability for a certain wavenumber range. The instability of the system is postponed by the presence of magnetic field. The magnetic field and surface tension are able to suppress this Kelvin-Helmholtz instability for small wavelength perturbations and the medium porosity reduces the stability range given in terms of a difference in streaming velocities and the Alfvén velocity. The suspended particles do not affect the above results.  相似文献   

17.
The effects of suspended particles and the finite thermal and electrical conductivities on the magnetogravitational instability of an ionized rotating plasma through a porous medium have been investigated, under varying assumptions of the rotational axis and the modes of propagation. In all the cases it is observed that the Jeans' criterion determines the condition of instability with some modifications due to various parameters. The effects of rotation, the medium porosity, and the mass concentration of the suspended particles on instability condition have been removed by (1) magnetic field for longitudinal mode of propagation with perpendicular rotational axis, and (2) viscosity for transverse propagation with rotational axis parallel to the magnetic field. The mass concentration reduces the effects of rotation. Thermal conductivity replaces the adiabatic velocity of sound by the isothermal one, whereas the effect of the finite electrical conductivity is to delink the alignment between the magnetic field and the plasma. Porosity reduces the effects of both the magnetic field and the rotation, on Jeans' criterion.  相似文献   

18.
We use the Langevin law of magnetization to study the linear stability of a convective flow in a flat vertical layer of ferrofluid subject to a transverse temperature gradient and a uniform magnetic field. The stability of the flow against planar, spiral and three-dimensional perturbations is examined, and the stability boundaries and characteristics of critical disturbances are determined. The competition between the monotonic mode and two types of wave modes is analyzed taking into account the properties of the fluid (magnetic susceptibility and Prandtl number) and the magnetic field strength. The domain of parameters where the oscillatory thermomagnetic wave instability exists is found.  相似文献   

19.
General equations governing the stability of stratified fluid in a stratified porous medium in the presence of suspended particles and variable horizontal magnetic field, separately, have been derived. Assuming stratifications in density, viscosity, suspended particles number density, medium porosity, medium permeability and a magnetic field of exponential form the dispersion relations have been obtained. Systems have been found to be stable for stable stratifications and unstable for unstable stratifications. A system which was unstable in the absence of magnetic field can be completely stabilized by a magnetic field for a certain wave-number range. The behaviour of growth rates with respect to fluid viscosity, medium permeability, suspended particles number density and magnetic field has been examined analytically.  相似文献   

20.
The instability of the plane interface between two uniform, superposed, electrically conducting and counter-streaming fluids through a porous medium is considered in the presence of a horizontal magnetic field. In the absence of surface tension, perturbations transverse to the direction of streaming are found to be unaffected by the presence of streaming if perturbations in the direction of streaming are ignored. For perturbations in all other directions there exists instability for a certain wavenumber range. The instability of this system is postponed by the presence of magnetic field. The magnetic field and surface tension are able to suppress this Kelvin-Helmholtz instability for small wavelength perturbations and the medium porosity reduces the stability range given in terms of a difference between the streaming velocities and the Alfvén velocity.This research forms a part of the research project awarded to the first author (R.C.S.) by the University Grants Commission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号