首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current work aims to examine how the nature of cellular instabilities controls the re-initiation capability and dynamics of a gaseous detonation transmitting across a layer of inert (or non-detonable) gases. This canonical problem is tackled via computational analysis based on the two-dimensional, reactive Euler equations. Two different chemical kinetic models were used, a simplified two-step induction-reaction model and a detailed model for hydrogen-air. For the two-step model, cases with relatively high and low activation energies, representing highly and weakly unstable cellular detonations, respectively, are considered. For the weakly unstable case, two distinct types of re-initiation mechanisms were observed. (1) For thin inert layers, at the exit of the layer the detonation wave front has not fully decayed and thus the transverse waves are still relatively strong. Detonation re-initiation in the reactive gas downstream of the inert layer occurs at the gas compressed by the collision of the transverse waves, and thus is referred to as a cellular-instability-controlled re-initiation. (2) If an inert layer is sufficiently thick, the detonation wave front has fully decayed to a planar shock when it exits the inert layer, and re-initiation still occurs downstream as a result of planar shock compression only, which is thus referred to as a planar-shock-induced re-initiation. Between these two regimes there is a transition region where the wave front is not yet fully planar, and thus perturbations by the transverse waves still play a role in the re-initiation. For the highly unstable case, re-initiation only occurs via the cellular-instability-controlled mechanisms below a critical thickness of the inert layer. Additional simulations considering detailed chemical kinetics demonstrate that the critical re-initiation behaviors of an unstable stoichiometric mixture of hydrogen-air at 1 atm and 295 K are consistent with the finding from the two-step kinetic model for a highly unstable reactive mixture.  相似文献   

2.
The flame acceleration and the physical mechanism underlying the deflagration-to-detonation transition (DDT) have been studied experimentally, theoretically, and using a two-dimensional gasdynamic model for a hydrogen-oxygen gas mixture by taking into account the chain chemical reaction kinetics for eight components. A flame accelerating in a tube is shown to generate shock waves that are formed directly at the flame front just before DDT occurred, producing a layer of compressed gas adjacent to the flame front. A mixture with a density higher than that of the initial gas enters the flame front, is heated, and enters into reaction. As a result, a high-amplitude pressure peak is formed at the flame front. An increase in pressure and density at the leading edge of the flame front accelerates the chemical reaction, causing amplification of the compression wave and an exponentially rapid growth of the pressure peak, which “drags” the flame behind. A high-amplitude compression wave produces a strong shock immediately ahead of the reaction zone, generating a detonation wave. The theory and numerical simulations of the flame acceleration and the new physical mechanism of DDT are in complete agreement with the experimentally observed flame acceleration, shock formation, and DDT in a hydrogen-oxygen gas mixture.  相似文献   

3.
A novel experimental technique is proposed to study the detonation propagation in a layer of non-reacted gas weakly confined by combustion products. This problem is relevant to rotating detonation engines, where transverse detonations are confined by products of a previous rotation cycle, and other applications such as industrial safety. The experimental technique utilizes a flame ignited along the top wall in a long channel. The preferential growth of the flame along the long direction of the channel creates a finger flame and permits to create a narrow layer of unburned gas. A detonation ignited outside of this layer then propagates through the layer. This permits to conduct accurate observations of the detonation interaction with the inert gas and determine the boundary condition of the interaction. The present paper provides a proof-of-concept demonstration of the technique in a 3.4 m by 0.2 m channel, in which long finger flames were observed in ethylene-oxygen mixtures. The flame is visualized by high-speed direct luminosity over its entire travel, coupled with pressure measurements. A direct simulation of the flame growth served to supplement the experiments and evaluate the role of the induced flow by the flame growth, which gives rise to a non-uniform velocity distribution along the channel length. Detonation experiments were also performed at various layer heights in order to establish the details of the interaction. The structure was visualized using high speed Schlieren video. It was found that an inert shock always runs ahead of the detonation wave, which gives rise to a unique double shock reflection interaction.  相似文献   

4.
考察球面爆轰波聚心传播过程中,波阵面附近压力和温度不断升高引起化学反应进程的改变;对比氢氧可燃气体与氮气的数值模拟结果,分析化学反应对波面温度和压力的影响,从而考察Zeldovich理论预测聚心爆轰波后参数的精确性.数值结果表明,爆轰波聚心传播初期,放热的燃烧反应对波后热力学参数起主导作用;传播后期,波阵面趋近于对称中心时,吸热的气体解离反应变得非常活跃,解离反应对后期的汇聚压力影响不大,但会在很大程度上限制汇聚温度的升高.  相似文献   

5.
Initiation of detonation by conical projectiles   总被引:2,自引:0,他引:2  
Initiation of detonation by a hypersonic conical projectile launched into a combustible gas mixture is investigated. From analytic considerations of the flowfield, energetic and kinetic limits are proposed to predict the conditions required to initiate an oblique detonation wave in the mixture. To experimentally investigate these limits, projectiles with cone half angles varying from 15° to 60° were launched into a stoichiometric mixture of hydrogen/oxygen with 70% argon dilution at initial pressure between 10 and 200 kPa. The projectiles were launched from a combustion-driven gas gun at velocities as great as 2.5 km/s (corresponding to 150% of the Chapman Jouguet velocity). Pictures of the flowfields generated by the projectiles were taken via schlieren photography. Five combustion regimes could be observed about the projectile ranging from a prompt and delayed oblique detonation wave formation, combustion instabilities, a wave splitting, and an inert shock wave. The two theoretical limits provide a means to interpret the observed flowfield regimes and are in satisfactory agreement with the experimental results.  相似文献   

6.
The Letter presents analytical, numerical and experimental studies of the mechanism underlying the deflagration-to-detonation transition (DDT). Insight into how, when, and where DDT occurs is obtained by analyzing analytically and by means of multidimensional numerical simulations dynamics of a flame accelerating in a tube with no-slip walls. It is shown that the deflagration-to-detonation transition exhibits three separate stages of evolution corroborating majority experimental observations. During the first stage flame accelerates and generates shocks far ahead of the flame front. During the second stage the flame slows down, shocks are formed in the immediate proximity of the flame front and the preheated zone ahead of the flame front is created. The third stage is self-restructuring of the steep temperature profile within the flame, formation of a reactivity gradient and the actual formation of the detonation wave itself. The mechanism for the detonation wave formation, given an appropriate formation of the preheated zone, seems to be universal and involves a reactivity gradient formed from the initially steep flame temperature profile in the presence of the preheated zone. The developed theory and numerical simulations are found to be well consistent with extensive experiments of the DDT in hydrogen-oxygen and ethylene-oxygen mixtures in tubes with smooth and rough walls.  相似文献   

7.
The evolution from a temperature gradient to a detonation is investigated for combustion mixture whose chemistry is governed by a detailed chemical kinetics. We show that a detailed chemical reaction model has a profound effect on the spontaneous wave concept for detonation initiation by a gradient of reactivity. The evolution to detonation due to a temperature gradient is considered for hydrogen-oxygen and hydrogen-air mixtures at different initial pressures. It is shown that the minimal length of the temperature gradient for which a detonation can be ignited is much larger than that predicted from a one-step chemical model.  相似文献   

8.
In rotating detonation engines and explosion accidents, detonation may propagate in an inhomogeneous mixture with inert layers. This study focuses on detonation propagation in a stoichiometric H2/O2/N2 mixture with multiple inert layers normal to the detonation propagation direction. One- and two-dimensional simulations considering detailed chemistry are conducted. The emphasis is placed on assessing the effects of inert layer on detonation reinitiation/failure, detonation propagation speed, detonation cell structure and cell size. Specifically, the inert layer thickness and the spacing between two consecutive inert layers are varied. Either detonation reinitiation or failure across the inert layers is observed. It is found that successful detonation reinitiation occurs only at relatively small values of the inert layer thickness and spacing. For each given value of the inert layer spacing, there is a critical inert layer thickness above which detonation fails after crossing the inert layers. This critical inert layer thickness is found to decrease as the inert layer spacing increases. The detailed process of detonation reinitiation across the inert layers is analyzed. The interaction between the transverse shock waves is shown to induce local autoignition/explosion and eventually over-driven detonation development in the reactive layer. The averaged detonation propagation speed in the inhomogeneous mixture is compared to the CJ speed and very good agreement is achieved. This indicates that the inert layer does not affect the detonation propagation speed once successful detonation reinitiation happens. Unlike the detonation speed, the detonation cell structure and cell size are greatly affected by the inert layer results. For the first time, large cellular structure with size linearly proportional to the inert layer spacing is observed for detonation propagation across inert layers. Besides, a double cellular structure is observed for relatively large spacing between inert layers. The formation of double cellular structure is interpreted.  相似文献   

9.
Experiments were performed in a horizontal channel partially filled with a layer of 12.7 mm ceramic-oxide beads filled with a nitrogen-diluted stoichiometric methane–oxygen mixture, i.e., CH4 + 2(O2 + 2/3N2). Ionization probes and pressure transducers were used to track the explosion front velocity in the 1.22 m long, 76 mm wide and 152 mm high horizontal channel. Schlieren photography and smoked foil techniques are used to gain insight into the explosion front structure. The explosion propagation phenomenon was characterized by the combustion in the bead layer and the unobstructed gap above. It was determined that for a fixed gap height the bead layer thickness had very little effect on the explosion propagation phenomenon. However, for a fixed bead layer height the explosion propagation was strongly influenced by the gap height. The combustion products vented from the bead layer behind the flame propagating in the gap affects the structure of the shock-flame front in the gap and the maximum flame velocity achieved. The coupling between the vented products and the flame velocity in the gap was strongly influenced by the gap height. The gap height also affects the structure of the detonation wave propagating in the gap following DDT that always occurred in the gap. The DDT run-up distance was found to increase with increasing gap height and inversely with initial pressure.  相似文献   

10.
Experimental images of detonation fronts are made for several fuel-oxidizer mixtures, including hydrocarbon–air systems. Schlieren and planar laser induced fluorescence techniques are used to image both the shock configurations and the OH reaction front structure in a single experiment. The experiments are carried out in a narrow rectangular channel. The degree of instability of detonation fronts in different mixtures is evaluated by comparing calculated mixture parameters with the longitudinal neutral stability curve. The images reveal that the structure of the front increases dramatically in complexity as the mixture parameters move away from the neutral stability curve into the unstable region. Of the mixtures studied, nitrogen-diluted hydrocarbon mixtures are predicted to be the most unstable, and these show the greatest degree of wrinkling in the shock and OH fronts, with distortion occurring over a wide range of spatial scales. In the most unstable cases, separation of the shock and OH front occurs, and localized explosions in these regions are observed in a high-speed schlieren movie. This is in dramatic contrast to the weakly unstable waves that have smooth reaction fronts and quasi-steady reaction zones with no evidence of localized explosions. A key feature of highly unstable waves is very fine scale wrinkling of the OH and shock fronts, which is absent in the low-activation energy cases. This may be due to the superposition of cellular structures with a wide range of cell sizes. In contrast to soot foils, images of the OH front have a more stochastic appearance, and organized cellular structure is not as apparent.  相似文献   

11.
 针对气相爆轰波成长机制研究,采用压力传感器和高速摄影技术,测试了氢氧混合气体在点火后的火焰波、前驱冲击波以及爆轰波的成长变化过程,计算了冲击波过程参数和气体状态参数,分析了火焰加速机制。实验结果表明,APX-RS型高速摄影系统可用于拍摄气相爆轰波的成长历程;氢氧爆轰波的产生是由于湍流火焰和冲击波的相互正反馈作用,导致反应区内多处发生局部爆炸,爆炸波与冲击波相互耦合,最终成长为定常爆轰波。  相似文献   

12.
The flow of bubbly fluid comprising a mixture of bubbles filled with explosive and inert gases, which is driven through a converging channel, was studied. Depending on the velocity of the hummer hitting the bubbly fluid boundary, the flow may be accompanied by the development of detonation waves which compress the bubbles with inert gas.  相似文献   

13.
The formation of an oblique detonation wave in a supersonic hydrogen-oxygen flow about a planar wedge is considered. It is shown that the excitation of the electronic state b 1Σ g + in oxygen molecules by resonant laser radiation with a wavelength of 762 nm makes it possible to initiate detonation combustion at a distance of ≈1 m from the tip of the wedge at low temperatures (500–600 K). Notably, it suffices to irradiate the gas in the narrow (0.5–1.0 cm across) paraxial region of the flow near the tip of the wedge. It is found that the laser-induced excitation of molecular oxygen is several times more efficient than ordinary heating of the mixture to initiate a detonation wave.  相似文献   

14.
矩形管内临界爆轰动力学数值分析   总被引:1,自引:0,他引:1       下载免费PDF全文
 对矩形管内临界爆轰动力学特征进行了数值分析。采用基元反应描述爆轰化学反应过程,采用二阶附加半隐的龙格-库塔法和5阶WENO格式求解二维反应欧拉方程。对于25%氩稀释化学计量比的氢氧预混气体,当管道宽度为30 mm、初温为300 K时,产生临界爆轰的预混气体初压为3.5 kPa。在此临界条件下,获得了临界爆轰胞格结构、沿壁面的速度和峰值压力曲线及流场波系演变特征。着重对比分析了矩形管内临界爆轰与普通爆轰在爆轰波速度、平均速度、胞格宽长比、横波结构、未反应气囊及旋涡结构之间的差异,深入认识了临界爆轰的不稳定性和化学反应动力学特征。  相似文献   

15.
In this paper, we have studied the effect of impurity and inert gases on the formation and propagation of cellular-combustion regimes for their inhomogeneous distribution above the surface of the reacting metal layer. The gas-dynamic aspects of the formation and steady propagation of inhomogeneous wave structures in the combustion of a titanium powder layer in through and semi-closed inclined air canals and in channels with uneven loading are considered. The gas composition heterogeneity over the reaction zone and the gas stratification, i.e., the stratification of a gas mixture of different densiies above the reacting layer, are shown to lead to the formation of inclined non-uniform and cellular fronts under conditions of a lack of active gas in the reaction zone and the loss of stability of the planar front.  相似文献   

16.
The reflection of a CJ detonation from a perforated plate is used to generate high speed deflagrations downstream in order to investigate the critical conditions that lead to the onset of detonation. Different perforated plates were used to control the turbulence in the downstream deflagration waves. Streak Schlieren photography, ionization probes and pressure transducers are used to monitor the flow field and the transition to detonation. Stoichiometric mixtures of acetylene–oxygen and propane–oxygen were tested at low initial pressures. In some cases, acetylene–oxygen was diluted with 80% argon in order to render the mixture more “stable” (i.e., more regular detonation cell structure). The results show that prior to successful detonation initiation, a deflagration is formed that propagates at about half the CJ detonation velocity of the mixture. This “critical” deflagration (which propagates at a relatively constant velocity for a certain duration prior to the onset of detonation) is comprised of a leading shock wave followed by an extended turbulent reaction zone. The critical deflagration speed is not dependent on the turbulence characteristics of the perforated plate but rather on the energetics of the mixture like a CJ detonation (i.e., the deflagration front is driven by the expansion of the combustion products). Hence, the critical deflagration is identified as a CJ deflagration. The high intensity turbulence that is required to sustain its propagation is maintained via chemical instabilities in the reaction zone due to the coupling of pressure fluctuations with the energy release. Therefore, in “unstable” mixtures, critical deflagrations can be supported for long durations, whereas in “stable” mixtures, deflagrations decay as the initial plate generated turbulence decays. The eventual onset of detonation is postulated to be a result of the amplification of pressure waves (i.e., turbulence) that leads to the formation of local explosion centers via the SWACER mechanism during the pre-detonation period.  相似文献   

17.
Hydrocarbon fueled detonations are imaged in a narrow channel with simultaneous schlieren and broadband chemiluminescence at 5 MHz. Mixtures of stoichiometric methane and oxygen are diluted with various levels of nitrogen and argon to alter the detonation stability. Ethane is added in controlled amounts to methane, oxygen, nitrogen mixtures to simulate the effects of high-order hydrocarbons present in natural gas. Sixteen unique mixtures are characterized by performing statistical analysis on data extracted from the images. The leading shock front of the schlieren images is detected and the normal velocity is calculated at all points along the front. Probability distribution functions of the lead shock speed are generated for all cases and the moments of distribution are computed. A strong correlation is found between mixture instability parameters and the variance and skewness of the probability distribution; mixtures with greater instability have larger skewness and variance. This suggests a quantitative alternative to soot foil analysis for experimentally characterizing the extent of detonation instability. The schlieren and chemiluminescence images are used to define an effective chemical length scale as the distance between the shock front and maximum intensity location along the chemiluminescence front. Joint probability distribution functions of shock speed and chemical length scale enable statistical characterization of coupling between the leading shock and following reaction zone. For more stable, argon dilute mixtures, it is found that the joint distributions follow the trend of the quasi-steady reaction zone. For unstable, nitrogen diluted mixtures, the distribution only follows the quasi-steady solution during high-speed portions of the front. The addition of ethane is shown to have a stabilizing effect on the detonation, consistent with computed instability parameters.  相似文献   

18.
The entry of a shock wave from air into water containing reactive gas (stoichiometric acetylene–oxygen mixture) bubbles uniformly distributed over the volume of the liquid has been numerically investigated using equations describing two-phase compressible viscous reactive flow. It has been demonstrated that a steady-state supersonic self-sustaining reaction front with rapid and complete fuel burnout in the leading shock wave can propagate in this bubbly medium. This reaction front can be treated as a detonation-like front or “bubble detonation.” The calculated and measured velocities of the bubble detonation wave have been compared at initial gas volume fraction of 2 to 6%. The observed and calculated data are in satisfactory qualitative and quantitative agreement. The structure of the bubble detonation wave has been numerically studied. In this wave, the gas volume fraction behind the leading front is approximately 3–4 times higher than in the pressure wave that propagates in water with air bubbles when the other initial conditions are the same. The bubble detonation wave can form after the penetration of the shock wave to a small depth (~300 mm) into the column of the bubbly medium. The model suggested here can be used to find optimum conditions for maximizing the efficiency of momentum transfer from the pressure wave to the bubbly medium in promising hydrojet pulse detonation engines.  相似文献   

19.
 采用12组分、23个化学反应的基元化学反应模型,用5阶加权本质无震荡格式(WENO)、3阶TVD Runge-Kutta格式,对H2-O2-N2混合气体胞格爆轰进行了数值模拟。研究了一维ZND爆轰、自维持爆轰的详细结构以及三波点附近的流动结构。计算结果表明:由横波的压力可以显著促进二维爆轰波波阵面的形成;横波的运动生成三波点,三波点造成了爆轰的自维持传播。  相似文献   

20.
空气中激光支持爆轰波实验及理论分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究激光击穿空气产生的等离子体爆轰波形成机制和传播规律,利用高能量CO2激光器产生强激光,进行了空气中产生激光支持等离子体爆轰波实验。实验中:设置了诱导靶板,用于诱发和定位空气中的激光支持爆轰波;以激光器升压过程球隙放电产生的光信号作为触发源,触发高时间分辨率(纳秒级)的高速相机,记录了激光支持爆轰波的成长和传播全过程。分析了激光支持爆轰波的形成机理和传播规律。采用C-J爆轰理论,计算了激光支持爆轰波的压力和温度。研究结果表明:激光支持等离子体爆轰波形成初期,等离子体爆轰波发光体为球形;随着时间增加,等离子体爆轰波发光体的形状类似流星,且头部为等离子体前沿吸收层,亮度较高,而尾部等离子体温度较低,亮度较弱。等离子体爆轰波高速向激光源的方向移动,爆轰波速度高达18 km/s,温度约为107K。随着激光强度的减弱,爆轰波速度迅速按指数规律衰减,当爆轰波吸收的激光能量不能有效支持爆轰波传播时,爆轰波转变为冲击波。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号