首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The presence of 135Xe is often used as an indicator that fission has occurred, and is used to help enforce the Comprehensive Test Ban Treaty. There are no known commercial suppliers, though it can be acquired. Readily available standards of this isotope are very useful. 135Xe can be produced through fission, or by neutron capture on 134Xe. At the INL, scientists have previously transported fission products from an electroplated 252Cf thin source for the measurement of nuclear data of short-lived fission products using a technique called He-Jet collection. A similar system has been applied to the collection of gaseous 135Xe, and 133Xe, in order to produce standards of these isotopes.  相似文献   

2.
A double focusing sector field mass filter used in Nier–Johnson geometry has been built in order to perform Kr isotope enrichment for 81Kr and 85Kr isotopes. The principle consists in implanting Kr+ ions accelerated at 7 keV in Al foils after separation using the magnetic sector. A specific ion source has been designed capable of generating high Kr+ ion beams (>0.5 μA) to transfer into the collecting Al foils in 3 to 5 h significant fractions of large Kr samples (1015 to 1016 atoms) initially introduced in the instrument. Implanted Kr isotopes can be further selectively released from the Al foil by surface ablation using an infrared laser beam. Implantation yields and enrichment factors are measured using a conventional mass spectrometer. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A radioactive 137Cs source has been analyzed for the radioactive parent 137Cs and stable decay daughter 137Ba. The ratio of the daughter to parent atoms is used to estimate the date when Cs was purified prior to source encapsulation (an “age” since purification). The isotopes were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) after chemical separation. In addition, Ba was analyzed by isotope dilution ICP-MS (ID-ICP-MS). A detailed error analysis of the mass spectrometric work has been undertaken to identify areas of improvement, as well as quantifying the effect the errors have on the “age” determined. This paper reports an uncertainty analysis to identifying areas of improvement and alternative techniques that may reduce the uncertainties. In particular, work on isotope dilution using ICP-MS for the “age” determination of sealed sources is presented. The results will be compared to the original work done using external standards to calibrate the ICP-MS instrument.  相似文献   

4.
In the present study, we developed a comprehensive strategy to evaluate matrix effect (ME) and its impact on the results of isotope dilution mass spectrometry (IDMS) in analysis of chloramphenicol (CAP) residues in milk powder. Stable isotope-labeled internal standards do not always compensate ME, which brings the variation of the ratio (the peak area of analyte/the peak area of isotope). In our investigation, impact factors of this variation were studied in the extraction solution of milk powder using three mass spectrometers coupled with different ion source designs, and deuterium-labeled chloramphenicol (D5-CAP) was used as the internal standard. ME from mobile phases, sample solvents, pre-treatment methods, sample origins and instruments was evaluated, and its impact on the results of IDMS was assessed using the IDMS correction factor (θ). Our data showed that the impact of ME of mobile phase on the correction factor was significantly greater than that of sample solvent. Significant ion suppression and enhancement effects were observed in different pre-treated sample solutions. The IDMS correction factor in liquid–liquid extraction (LLE) and molecular imprinted polymer (MIP) extract with different instruments was greater or less 1.0, and the IDMS correction factor in hydrophilic lipophilic balance (HLB) and mix-mode cation exchange (MCX) extract with different instruments was all close to 1.0. To the instrument coupled with different ion source design, the impact of ME on IDMS quantitative results was significantly different, exhibiting a large deviation of 11.5%. Taken together, appropriate chromatographic conditions, pre-treatment methods and instruments were crucial to overcome ME and obtain reliable results, when IDMS methods were used in the quantitative analysis of trace target in complex sample matrix.  相似文献   

5.
The article presents the results of a study on the bioaccumulation abilities of Polysiphonia fucoides, a red algae specific to the southern Baltic Sea, towards (of) gamma emitting isotopes. A laboratory experiment was carried out to determine changes in the activities of some isotopes—54Mn, 57Co, 65Zn, 110mAg,113Sn, 134Cs, 137Cs and 241Am—occurring in P. fucoides exposed to a seawater medium containing these isotopes over the course of 1 month. All analyzed isotopes showed the greatest increase of radioactive activity in plant tissue in the first 24 h of exposure. The temporary concentration factors of cesium isotopes were increasing linearly during the experiment from 114 to 274 in the case of 137Cs, and from 144 to 351 in the case of 134Cs. The level of the initial concentration factor of cesium isotopes in the plant proved to be independent of the initial concentration of the isotope in seawater and it took the lowest (125 dm3 kg?1) level among the studied isotopes. In the case of a mixture of gamma emitting isotopes, a linear relation between the individual isotope activity in P. fucoides and its initial concentration in seawater was established after the first day of exposure; the isotopes initial concentration factors ranged from 767 to 874 dm3 kg?1. Having reached the maximal concentration level, a statistically significant decline in radioactivity concentrations of the five isotopes in the plant tissue was observed. A half-life of biological removal of the isotopes from the plant tissue was established at: 3.8 days in the case of 54Mn, 4 days—57Co, 4 days—60Co, 4.2 days—137Cs and 241Am—3.5 days.  相似文献   

6.
A simple procedure for the synthesis of an important standard, isotopically enriched methylmercury, which is not commercially available, has been established successfully. The isotopically enriched standard synthesized is utilized in conventional isotope dilution mass spectrometry (IDMS), as well as in speciated IDMS (SIDMS), for determination of the true concentration of methylmercury in environmental samples. The CH3201Hg+ standard has been synthesized from commercially available 201HgO and tetramethyltin. The synthesis time required is 1 h at 60°C. The product is highly pure, yielding more than 90% as 201Hg in CH3201Hg+. Hazardous dimethylmercury does not occur during this synthesis procedure. The product synthesized was analyzed using high‐performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (ICP‐MS) and ICP‐MS alone in order to determine its concentration, isotopic composition and purity. The stability of the product was also evaluated for over 6 months and found to be stable at 4°C in the dark. The isotopically enriched methylmercury synthesized can be used in SIDMS and IDMS analyses as a standard. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
A new isotope separator has been designed, constructed, and put into routine operation for separation of 133Xe providing a major advancement and significant cost reduction in preparation of this radioactive isotope. The design features and advantages are discussed that expedite high purity separation of relatively small quantities of this isotope. These advantages could be easily used to expedite separation of other shorter-lived radioactive isotopes.  相似文献   

8.
Isotope dilution mass spectrometry (IDMS) can be considered a primary measurement method directly traceable to the International System of Units (SI). This measurement technique is increasingly employed in routine laboratories, owing to its unequalled analytical performance, precision and ease of accreditation. Unfortunately, for the adequate application of IDMS, several isotopically labelled standards, corresponding to the compounds of interest, are required. Additionally, when the enriched isotope is continuously added after a chromatographic separation, and an elemental ion source is used, it allows quantification of the different analytes being eluted from the column without requiring specific standards for each compound (online IDMS). In this article, we discuss how the traditional applicability of online IDMS for elemental speciation can be dramatically expanded by using carbon isotope tracers, oxidation or combustion reactions and a conventional molecular ion source. With such a strategy every carbon-containing compound being eluted from a chromatography system can be quantified without the need for specific standards as long as quantitative combustion/oxidation and complete elution occur. So far, only gas chromatography–combustion–mass spectrometry applications have been described, but recent results indicate the great possibilities of extending this novel approach to the quantification of organic compounds after separation by liquid chromatography.  相似文献   

9.
An important but commercially unavailable compound isotopically enriched monoethylmercury chloride (C2H5201HgCl), has been synthesized from commercially available 201HgO (98.11% enriched isotopic purity) and tetraethyltin. The required synthesis time is 1 h at 90 °C, and the product is the single product of monoethylmercury chloride, yielding more than 95% as 201Hg in C2H5201Hg+ (98.19 ± 0.22% enriched isotopic purity). The synthesized product was analyzed with high‐performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC‐ICP‐MS) to determine its concentration, isotopic composition and purity. The synthetic isotopically enriched monoethylmercury synthesized can be used in speciated isotope dilution mass spectrometry (SIDMS) and isotope dilution mass spectrometry (IDMS) analyses as a standard. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Barium isotopes were produced by 60 MeV/u 18O ion bombardment of natural uranium via 238U (18O, X) reactions. Ba sources were prepared by radiochemical separation, and measured by a HPGe detector. The cumulative cross sections were obtained by analysis of measured time sequence g-ray spectra. A double peak phenomenon in Ba isotope distribution was observed.  相似文献   

11.
Triple isotope dilution mass spectrometry (triple IDMS) has been applied for the first time on protein quantification, especially on transferrin. Transferrin as an acute phase protein is a marker for several inflammation processes in the human body. Therefore, in Germany, the accurate and precise measurement of this important analyte is required. In this work, a new approach to triple IDMS is described and compared to double IDMS. Also, complete uncertainty budgets for both methods were set up to demonstrate the ability of this method to be used as a reference procedure. The relative expanded uncertainty (k?=?2) for triple IDMS (3.6 %) is smaller than the one for double IDMS (4.0 %). The content of transferrin found in the human serum reference material ERM-DA470k/IFCC ((2.41?±?0.08) g/kg) with both methods was in good agreement with each other and with the certificate. For triple IDMS ((2.426?±?0.086) g/kg) and for double IDMS ((2.317?±?0.092) g/kg), transferrin was determined. Although triple IDMS is a little more time consuming compared to double IDMS, there is the advantage that the isotopic composition of the spike material does not have to be determined. This is very useful especially in case of a marginal isotopic enrichment in the spike or problems with the accurate measurement of the spike isotope ratio.
Figure
Using triple instead of double species-specific IDMS helps to reduce the uncertainty and improves the reliability of the results, especially in cases where an accurate determination of the spike isotope ratio is difficult or impossible, because the spike ratio cancels from the equation  相似文献   

12.
An online method using continuous flow isotope ratio mass spectrometry (CF‐IRMS) interfaced with a Gasbench II device was established to analyze carbon and oxygen isotopic compositions and to estimate the content of minor amounts of carbonate in silicate rocks. The mixtures of standard materials and high‐purity quartz are firstly used to calibrate different quantities of carbonate in silicates. The results suggest that the accuracy and precision of the online analysis are both better than those obtained using an offline method. There is a positive correlation between the carbonate weight and the Mass44 ion beam intensity (or peak area). When the weight of carbonate in the mixtures is greater than 70 µg (equal to ~1800 mV Mass44 ion beam intensity), the δ13C and δ18O values of samples usually have accuracy and precision of ±0.1‰ and ±0.2‰ (1σ), respectively. If the weight is less than 70 µg, some limitations (e.g., not perfectly linear) are encountered that significantly reduce the accuracy and precision. The measured δ18O values are systematically lower than the true values by ?0.3 to ?0.7‰; the lower the carbonate content, the lower the measured δ18O value. For samples with lower carbonate content, the required phosphoric acid doses are higher and more oxygen isotope exchanges with the water in the phosphoric acid. To guarantee accurate results with high precision, multiple analyses of in‐house standards and an artificial MERCK sample with δ13C values from ?35.58 to 1.61‰ and δ18O from 6.04 to 18.96‰ were analyzed simultaneously with the unknown sample. This enables correction of the measured raw data for the natural sample based on multiple‐point normalization. The results indicate that the method can be successfully applied to a range of natural rocks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
We have investigated the use of a Gaussian beam laser for MALDI Imaging Mass Spectrometry to provide a precisely defined laser spot of 5 μm diameter on target using a commercial MALDI TOF instrument originally designed to produce a 20 μm diameter laser beam spot at its smallest setting. A Gaussian beam laser was installed in the instrument in combination with an aspheric focusing lens. This ion source produced sharp ion images at 5 μm spatial resolution with signals of high intensity as shown for images from thin tissue sections of mouse brain.
Figure
?  相似文献   

14.
Clays and specially bentonite are widely used as natural adsorbents for wastewater treatment and as a barrier in landfills to prevent the contamination of subsoil and groundwater by leachates containing radioactive materials. The adsorption of four radionuclides, 134Cs(I), 90Sr(II), 133Ba(II) and 152Eu(III) by an Egyptian bentonite (Bent) and its modified Na+ form (Na-Bent) collected from a deposit within Alexandria governorate was investigated as a function of different parameters. The batch equilibrium technique was used and the kinetic results showed that the equilibrium was mostly reached within 10 min and the kinetic data fit well to the pseudo-second order model. The Langmuir model fits well the experimental data of all metals adsorption on Bent and Na-Bent except for adsorption of 133Ba on Bent, while 152Eu adsorption on Na-Bent fits better to the Freundlich model rather than to the Langmuir. Both Bent and Na-Bent fit well to the D-R model with adsorption energy of E > 8 kJ mol?1 that means that the adsorption reaction is expected to be controlled by both cation exchange and surface complexation reactions. At lower concentrations, the values of distribution coefficient (K d), follow the order of 152Eu > 90Sr > 134Cs > 133Ba for Bent and Na-Bent. The K d of 152Eu is higher than that of 134Cs in Bent up to 150 mg L?1. This order changes at higher concentration where the K d of 134Cs becomes higher than 152Eu after 150 mg L?1 for Bent and after 200 mg L?1 for Na-Bent. Na-Bent is preferred than Bent for the uptake of 90Sr and 134Cs especially at high concentration.  相似文献   

15.
The Spectral Deconvolution Analysis Tool (SDAT) software was developed to improve counting statistics and detection limits for nuclear explosion radionuclide measurements. SDAT utilizes spectral deconvolution spectroscopy techniques and can analyze both β–γ coincidence spectra for radioxenon isotopes and high-resolution HPGe spectra from aerosol monitors. The deconvolution algorithm of the SDAT requires a library of β–γ coincidence spectra of individual radioxenon isotopes to determine isotopic ratios in a sample. In order to get experimentally produced spectra of the individual isotopes, we have irradiated enriched samples of 130Xe, 132Xe, and 134Xe gas with a neutron beam from the TRIGA reactor at The University of Texas. The samples were counted in an Automated Radioxenon Sampler/Analyzer (ARSA) style β–γ coincidence detector. The spectra produced show that this method of radioxenon production yields samples with very high purity of the individual isotopes for 131mXe and 135Xe and a sample with a substantial 133mXe to 133Xe ratio.  相似文献   

16.
提出了一种适用于微量气体定量分析的大小球三步同位素稀释质谱法,并给出其实验模型和不确定度理论分析结果。通过引入三步稀释过程,不涉及稀释剂的纯度、丰度、添加质量等方面的数据,仅需测定各步稀释剂质量之比,在其中的两步反稀释过程中使用了基标准纯物质,从而使微量气体的定量分析结果可溯源至基标准纯物质。该方法解决了已有同位素稀释质谱法在微量气体定量分析中的难题。  相似文献   

17.
A new method for the measurement of argon isotope composition in a continuous flow of helium for potassium/argon geochronology is described. Extraction of argon from geological samples in multiple‐sample holders was carried out in a chamber by heating with a continuous Nd‐YAG laser. The extracted and pre‐concentrated argon is passed through a chromatographic capillary column in a flow of helium. Argon is separated from possible contaminants in the column and is injected through an open split into the ion source of an isotope ratio mass spectrometer. Measurement of the 36Ar, 38Ar and 40Ar isotopes was carried out in dynamic mode, using a triple‐collector ion detector. These experiments have shown that continuous flow mass spectrometry can be used for the analysis of radiogenic argon in picogram quantities with an accuracy that is satisfactory for the solution of many geochronological problems. The method of argon isotope measurement in a continuous flow of helium is an alternative to the measurement of argon isotopes in the static mode. The sensitivity and accuracy of argon measurement by this method are comparable with those provided by the classical static method. The measurement of argon isotopes in a continuous flow of helium is simpler and more reliable than measurement in the static mode. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Radionuclides such as 131I, 134Cs, 137Cs, and 239,240Pu in Korean rainwater have been analyzed by Korea Research Institute of Standards and Science (KRISS) since the Fukushima nuclear power plant accident in March 2011 to investigate the activity level, distribution pattern, and temporal variation and to assess the radiation dose the public is exposed to. The concentration of 131I in the Korean rainwater samples varied between 0.033 (minimum detectable activity; MDA) and 1.30 Bq kg?1 and the concentrations tended to decrease exponentially with time. The concentrations of 134Cs and 137Cs in rainwater ranged from 0.01 to 334 ± 74 and 0.29 ± 0.01 to 276 ± 1 mBq kg?1, respectively. The mean activity ratio of 137Cs/134Cs in the rainwater samples collected from April 18 to May 12 was estimated to be 0.44 ± 0.21, and this value is lower than that (ca. 1) observed in Fukushima, Japan, when there was an escape from the nuclear reactors. When an attempt was made to analyze Pu isotopes in rainwater samples, no Pu isotopes were detected above the MDA in any of the rainwater samples. Although the locations investigated were different from Asia to Europe, the concentrations of 131I, 134Cs and 137Cs in the rainwater are comparable, which suggests a global contamination of 131I, 134Cs, and 137Cs occurred because of the Fukushima nuclear power plant accident.  相似文献   

19.
In this study, a standard addition–isotope dilution mass spectrometry (SA-IDMS) method for quantification of endogenous progesterone in milk has been described. The method validation results, linearity, limits of detection and quantification, recovery and uncertainty were fit for the purpose of assigning reference mass fractions to proficiency testing schemes. The developed technique was compared to the isotope dilution mass spectrometry (IDMS) method already existing in the laboratory. Analytical results of two milk samples were (1.377 ± 0.048) μg/kg and (4.457 ± 0.155) μg/kg by SA-ID-LC/MS method, while the results were (1.355 ± 0.019) μg/kg and (4.359 ± 0.059) μg/kg by ID-LC/MS, respectively. Since SA-IDMS was an effective quantitative method that overcame matrix effect, similar quantitative results from IDMS and SA-IDMS indicated that the quantification of progesterone in milk was barely influenced by matrix. Both IDMS and SA-IDMS could be used to assign reference mass fractions to progesterone in milk inter-laboratory proficiency testing schemes.  相似文献   

20.
《Analytical letters》2012,45(12):1557-1565
A definitive method based on liquid chromatography isotope dilution mass spectrometry (LC-IDMS) has been developed for the determination of milk urea, an indicator of nutrition status for the lactating animals. The milk samples were treated twice by sequentially adding acetonitrile and chloroform to precipitate proteins and then were directly separated using normal phase liquid chromatography without chemical derivatization. After the matrix separation, exact matching IDMS was used for the determination of milk urea, with high accuracy, high precision, good linearity and low uncertainty. The recoveries obtained for the four spiked milk samples were 100.6–102.2%. The linear range of signal responses was 10–2000 mg · kg?1 with a linearity coefficient of 0.9995. The intraday and interday precisions in terms with relative standard deviations (RSDs) were 0.17–0.38% and 0.28–0.40%, respectively. The uncertainties of the whole sample analysis process were estimated to be 0.83%, 0.60%, and 0.64% for three samples with concentrations of 151.28, 184.36, and 266.66 mg · kg?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号