首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effective thermal conductivity κeff of seven opal + epoxy resin nanocomposite samples with 100% filling of first-order pores by epoxy resin was measured in the 100-to 300-K temperature interval. In the nanocomposite studied, the thermal conductivity of the matrix (amorphous SiO2 spheres) is larger than that of the filler material (epoxy resin). κeff(T) of the opal + epoxy resin nanocomposite at intermediate temperatures (100–300 K) is shown to behave similar to pure opal. An explanation of the observed effect is proposed.  相似文献   

2.
An opal-based nanocomposite has been prepared with NaCl incorporated in its pores. The nanocomposite was produced by impregnating the opal with a NaCl solution at room temperature. Thermal conductivity of the nanocomposite has been measured in the temperature range 4.2–300 K. The effective heat conductivity of the nanocomposite was found to be equal to that of pure opal. The observed phenomenon can be explained by assuming that NaCl resides in opal pores in the form of noncontacting needles, thus precluding heat propagation through it. Fiz. Tverd. Tela (St. Petersburg) 40, 379–380 (February 1998)  相似文献   

3.
The opal-Lu1.86Eu0.14O3 composites have been prepared using the developed technique for synthesizing luminophor nanocrystals in pores of synthetic opal through coprecipitation from a solution. It has been demonstrated that the position of the photonic stop band in the reflection spectrum of the infiltrated opal depends on the diameter of its spheres, the volume fraction of the embedded luminophor, and the angle of detection of the signal. The excitation and photoluminescence spectra of the composites have been analyzed, and the lifetime of the 5 D 0 excited state of Eu3+ ions has been examined. It has been revealed that the luminescence decay time for the luminophor increases by almost one order of magnitude with an increase in its content in opal pores. This effect has been attributed to the change in the nanocrystal size and to the decrease in the contribution from the surface nonradiative recombination in luminophor nanolayers of the composites.  相似文献   

4.
The thermal conductivity of an opal + epoxy-resin nanocomposite under 100% filling of first-order opal voids by epoxy resin was measured in the range 5–100 K. For T < T0 (T0 is the temperature at which the thermal conductivity of epoxy resin becomes equal to that of amorphous SiO2 opal spheres, with inclusion of their porosity associated with second-and third-order voids), the thermal conductivity of the opal + epoxy-resin nanocomposite undergoes a sharp decrease, which is qualitatively accounted for by the appearance of Kapitsa heat resistance at the contacts between the amorphous opal spheres and epoxy resin.  相似文献   

5.
The thermal conductivity of three single-crystal samples of the quasi-one-dimensional spin system of LiCuVO4 with different concentrations of defects (primarily, vacancies on the lithium sublattice) was measured along the crystallographic a axis (along the nonmagnetic lithium chains) in the temperature interval 5–300 K. An increase in thermal conductivity from that of the crystal lattice was revealed for T>150–200 K. This increase can be accounted for only by assuming LiCuVO4 to be a superionic conductor. This assumption was confirmed by measuring its electrical conductivity in the temperature interval 300–500 K. Li+ ions move over vacancies on the lithium sublattice (conducting channels) and act as charge carriers in LiCuVO4. It is shown that LiCuVO4 is a fairly good superionic conductor with application potential.  相似文献   

6.
This paper reports on a dielectric study of MCM-41 molecular sieves with cellular channels of different sizes filled with the NaNO2 ferroelectric. The temperature dependences of the permittivity and electrical conductivity of sodium nitrite in cellular channels are calculated from experimental data on the permittivity and electrical conductivity of the composite. The calculations are performed using the relationships obtained for the hexagonal matrix with parallel cylindrical inclusions within pores. The observed increase in the conductivity of sodium nitrite in confined geometry at high temperatures is attributed to partial melting. It is shown that the increase in the permittivity of the composite is caused by Maxwell-Wagner relaxation processes.  相似文献   

7.
Glassy LiPO3/crystalline Al2O3 and glassy LiPO3/crystalline ZrO2 (0–12.5 vol.% of oxide fillers) composite solid electrolytes have been prepared by glass matrix softening. Their thermal and transport properties have been investigated by differential scanning calorimetry (DSC) and impedance spectroscopy methods. The addition of ZrO2 leads to a decrease in the crystallization temperature of LiPO3 glass. It was found that the conductivity behavior depends on the nature of the dispersed addition. In the case of the Al2O3 addition, the increase in the electrical conductivity is observed. The ionic conductivity of the LiPO3/10% Al2O3 composite reaches 5.8 × 10?8 S/cm at room temperature. In contrast, the conductivity in the LiPO3/ZrO2 composite system decreases.  相似文献   

8.
The thermal expansion coefficients and the thermal conductivity of Bridgman-grown crystals of CuGa1−x InxTe2 solid solutions are investigated. It is found that the thermal expansion coefficient varies with x linearly, while the thermal conductivity is minimal when x=0.5. The Debye temperature and the rms dynamic atomic displacements are calculated from experimental data. It is shown that the Debye temperature decreases and the rms displacements in the crystal lattice sharply increase as the In content in the solid solutions grows.  相似文献   

9.
Three-dimensional nanocomposites consisting of an opal matrix and a metal have been prepared by the interaction of salts and oxides of different elements (Ni, Co, Fe, etc.) embedded in an opal matrix with isopropanol in the range of supercritical state parameters of the alcohol. According to X-ray powder diffraction analysis and transmission electron microscopy data, the composites consist of an X-ray amorphous opal matrix with pores filled by nanoparticles of Co (or CoO x ), metallic Ni, or Fe3O4 with a magnetite structure of various morphology. The sizes of the nanoparticles do not exceed the diameter of the pores in the opal matrix. A complex investigation of the nanocomposites has been performed using the electron magnetic resonance and vibrating magnetometry methods. All the studied samples at room temperature exhibit a ferromagnetic behavior. The coercive force of the samples lies in the range from 150 Oe for iron-containing nanocomposites to 565 Oe for cobalt-containing nanocomposites.  相似文献   

10.
A method has been proposed for the formation of three-dimensional arrays of isolated magnetic clusters NiO, Co3O4, and NiCo2O4 in the sublattice of pores in the matrix of bulk synthetic opals through a single impregnation of the pores with melts of nickel and cobalt nitrate crystal hydrates and their thermal degradation. The method makes it possible to controllably vary the degree of filling of pores in the matrix with oxides within 10–70 vol %. The composition and structure of the synthesized materials, as well as the dependences of their static magnetic susceptibility on the magnetic field strength, have been investigated.  相似文献   

11.
Samples of opal + NaCl nanocomposites with 100 and 80% filling of first-order opal voids by sodium chloride have been prepared. Their effective thermal conductivities, κeff, were measured in the temperature interval 5–300 K. The lattice thermal conductivity of NaCl loaded in the opal voids, κ ph op , was calculated from the measured κeff(T). The value of ph was found to be considerably smaller than the lattice thermal conductivity of bulk NaCl throughout the temperature interval studied. For T>20 K, this behavior of κ ph op (T) is accounted for by the presence of specific defects that form in NaCl loaded in opal voids. For T<20 K, κ ph op (T) is governed by boundary phonon scattering from bottlenecks in horn-shaped channels interconnecting the octahedral and tetrahedral first-order opal voids filled by sodium chloride. It was found that the value of κ ph op (T) in this temperature region depends substantially on the dimensions of the bottlenecks, whose thicknesses are related to the amount of the cristobalite forming in a near-surface layer of the amorphous SiO2 opal spheres in the course of preparation of the opal + NaCl nanocomposite.  相似文献   

12.
Samples of the opal + HgSe nanocomposite with 100% filling of the first-order opal pores by mercury selenide were prepared. The effective thermal conductivity κeff and electrical resistivity ρeff were measured in the temperature range T=5–200 K, and the thermopower coefficient α was measured in the interval 80–300 K. The coefficient α of HgSe in opal was shown to remain the same as that in bulk mercury selenide samples with similar carrier concentrations. The mechanism of carrier scattering in the HgSe loaded in opal also did not change. The total thermal conductivity κ tot 0 and electrical resistivity ρ0 were isolated from κeff and ρeff, and the electronic (κ e 0 ) and lattice (κ ph 0 ) components of thermal conductivity of HgSe in opal were determined. The magnitude of κ ph 0 was found to be considerably smaller than κph of bulk HgSe with the same carrier concentration throughout the temperature interval studied (5–200 K). For T>20 K, this behavior of κ ph 0 (T) is accounted for by the presence of specific impurities and defects forming in HgSe, and for T<20 K, by the onset of boundary scattering of phonons in the bottlenecks of the horn-shaped channels connecting first-order octahedral and tetrahedral opal pores loaded by mercury selenide.  相似文献   

13.
The Bragg diffraction spectrum of a synthetic opal with pores filled by the vanadium dioxide semiconductor (VO2) was found to be strongly affected by 0.1-µs-long YAG:Nd laser first-harmonic pulses (1.06 µm). This effect is associated with a structural phase transition in the opal-VO2 composite, which is accompanied by a strong change in the VO2 permittivity.  相似文献   

14.
The temperature and magnetic-field dependences of the heat capacity, thermal conductivity, thermopower, and electrical resistivity of the Sm0.55Sr0.45MnO3.02 ceramic material are studied in the temperature range 77–300 K and in magnetic fields up to 26 kOe. It is revealed that the quantities under investigation exhibit anomalous behavior due to a magnetic phase transition at the Curie temperature TC. An increase in the magnetic field strength H leads to an increase in the Curie temperature TC and a jump in the heat capacity ΔCp at TC. The temperature dependences of the measured quantities are characterized by hystereses that are considerably suppressed in a magnetic field of 26 kOe and depend neither on the thermocycling range nor on the rate of change in the temperature. The thermal conductivity K at temperatures above TC shows unusual behavior for crystalline solids (dK/dT>0) and, upon the transition to a ferromagnetic state, drastically increases as a result of a decrease in the phonon scattering by Jahn-Teller distortions. It is demonstrated that the hystereses of the studied properties of the Sm0.55Sr0.45MnO3.02 manganite are caused by a jumpwise change in the critical temperature due to variations in the lattice parameters upon the magnetic phase transition.  相似文献   

15.
The thermal conductivity κ of photonic crystals differing in degree of optical homogeneity (single crystals of synthetic opals) was measured in the 4.2–300 K temperature range. The thermal conductivity revealed, in addition to the conventional decrease in comparison with solid amorphous SiO2 characteristic of porous solids, a noticeable decrease for T<20 K, the range wherein the phonon wavelength in amorphous SiO2 approaches the diameters of the contact areas between the opal spheres. This effect is enhanced in the case of phonon propagation along the SiO2 sphere chains (six directions in the cubic opal lattice). The propagation of light waves (photons) through a medium with spatially modulated optical properties (photonic crystals) is presently well studied. The propagation of acoustic waves through a medium with spatially modulated acoustic properties (phononic crystals) may also reveal specific effects, which are discussed in this paper; among them are, e.g., the ballistic mode of phonon propagation and waveguide effects.  相似文献   

16.
The temperature dependences of the thermal conductivity are calculated for solid SF6 and Xe. The influence of thermal pressure in a crystal on the isochoric thermal conductivity is investigated. The contributions of the phonon-phonon and phonon-rotation interactions to the total thermal resistance of solid SF6 are calculated using a modified method of reduced coordinates. The temperature dependence of the isochoric thermal conductivity of SF6 is explained by a combined effect of thermal pressure and phonon-rotation interaction.  相似文献   

17.
The magnetization, the electrical resistivity, the specific heat, the thermal conductivity, and the thermal diffusion of a polycrystalline Heusler alloy Ni45.37Mn40.91In13.72 sample are studied. Anomalies, which are related to the coexistence of martensite and austenite phases and the change in their ratio induced by a magnetic field and temperature, are revealed and interpreted. The behavior of the properties of the alloy near Curie temperature TC also demonstrates signs of a structural transition, which suggests that the detected transition is a first-order magnetostructural phase transition. The nontrivial behavior of specific heat detected near the martensite transformation temperatures is partly related to a change in the electron density of states near the Fermi level. The peculiar peak of phonon thermal conductivity near the martensitic transformation is interpreted as a consequence of the appearance of additional soft phonon modes, which contribute to the specific heat and the thermal conductivity.  相似文献   

18.
The dielectric properties and electrical conductivity of the composite material, which was prepared by incorporating the P(VDF60/Tr40) copolymer into the porous glass matrix (the average pore diameter is approximately equal to 320 nm), and the bulk sample of the P(VDF60/Tr40) copolymer have been investigated in the temperature range 290–440 K. It is revealed that the incorporated material is characterized by an increase in the melting temperature and a considerable decrease in the temperature at which the ferroelectric phase formed in polymer inclusions becomes unstable. It is shown that charge transfer in the composite material occurs predominantly through channels filled with the polymer.  相似文献   

19.
LiSn2P3O12 with sodium (Na) super ionic conductor (NASICON)-type rhombohedral structure was successfully obtained at low sintering temperature, 600 °C via citric acid-assisted sol-gel method. However, when the sintering temperature increased to 650 °C, triclinic structure coexisted with the rhombohedral structure as confirmed by X-ray diffraction analysis. Conductivity–temperature dependence of all samples were studied using impedance spectroscopy in the temperature range 30 to 500 °C, and bulk, grain boundary and total conductivity increased as the temperature increased. The highest bulk conductivity found was 3.64?×?10?5 S/cm at 500 °C for LiSn2P3O12 sample sintered at 650 °C, and the lowest bulk activation energy at low temperature was 0.008 eV, showing that sintering temperature affect the conductivity value. The voltage stability window for LiSn2P3O12 sample sintered at 600 °C at ambient temperature was up to 4.4 V. These results indicated the suitability of the LiSn2P3O12 to be exploiting further for potential applications as solid electrolytes in electrochemical devices.  相似文献   

20.
We have developed a new substrate for surface‐enhanced Raman scattering (SERS) measurements involving a thin silver layer deposited over an ion‐etched TiO2 inverse opal. The latter is formed by chemically infiltrating a polystyrene opal array with TiO2 followed by a thermal decomposition of the spheres. The SERS response of the these substrates is examined for several sphere sizes and lasers wavelengths; the results show that such substrates yield high enhance factors, comparable to substrates involving a silver layer deposited directly on a polystyrene opal array. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号