首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Utilizing the advantage of quantum entanglement swapping, a multi-party quantum key agreement protocol with authentication is proposed. In this protocol, a semi-trusted third party is introduced, who prepares Bell states, and sends one particle to multiple participants respectively. After that the participants can share a Greenberger-Horne-Zeilinger state by entanglement swapping. Finally, these participants measure the particles in their hands and obtain an agreement key. Here, classical hash function and Hadamard operation are utilized to authenticate the identity of participants. The correlations of GHZ states ensure the security of the proposed protocol. To illustrated it detailly, the security of this protocol against common attacks is analyzed, which shows that the proposed protocol is secure in theory.

  相似文献   

2.
A significant aspect of quantum cryptography is quantum key agreement (QKA), which ensures the security of key agreement protocols by quantum information theory. The fairness of an absolute security multi-party quantum key agreement (MQKA) protocol demands that all participants can affect the protocol result equally so as to establish a shared key and that nobody can determine the shared key by himself/herself. We found that it is difficult for the existing multi-party quantum key agreement protocol to withstand the collusion attacks. Put differently, it is possible for several cooperated and untruthful participants to determine the final key without being detected. To address this issue, based on the entanglement swapping between G-like state and Bell states, a new multi-party quantum key agreement protocol is put forward. The proposed protocol makes full use of EPR pairs as quantum resources, and adopts Bell measurement and unitary operation to share a secret key. Besides, the proposed protocol is fair, secure and efficient without involving a third party quantum center. It demonstrates that the protocol is capable of protecting users’ privacy and meeting the requirement of fairness. Moreover, it is feasible to carry out the protocol with existing technologies.  相似文献   

3.
Since the first quantum key agreement protocol based on Bell state was presented by Zhou et al., much attention has focused on it, which is based on entangled states and product states. In this paper, we propose a multi-party quantum key agreement protocol, in which the genuinely maximally entangled six-qubit states are used. The presented protocol allows participants to share a secret key and preserves the following advantages. First, the outcome of the protocol is influenced by all parties; Second, the presented protocol is fairness, i.e., no one can determine the shared key alone; Third, outside eavesdroppers cannot gain the generated key without introducing any error. The security analysis shows that our protocol can resist both outside attacks and inside attacks.  相似文献   

4.

BB84-state is the non-orthogonal single-photon state which has the advantage of easy implementation compared with the quantum multi-photon entanglement states. In this paper, based on BB84-state, by introducing a trusted third-party voting center, a quantum voting scheme is proposed. In this scheme, by performing corresponding unitary operation on BB84-state, all voters send their voting information to the tallyman Charlie, then Charlie counts all votes under the supervision of voting management center Bob, which ensures that the protocol can resist inside attacks. Moreover, by utilizing the decoy particles, our scheme can efficiently prevent outside attacks. Compared with other related quantum voting protocols, our protocol has higher qubit efficiency and fewer interactive times.

  相似文献   

5.

Based on heralded single-photon source (HSPS), a decoy-state measurement-device-independent quantum key distribution (MDI-QKD) protocol is proposed in this paper. The MDI-QKD protocol mainly uses orbital angular momentum (OAM) states and pulse position modulation (PPM) technology to realize the coding of the signal states in heralded single-photon source. The three-intensity decoy states are used to avoid the attacks against the light source. Moreover, the formula of key generation rate is given by computing the lower bound of the yield of single-photon pairs and the upper bound of the error rate of single-photon pairs. Numerical simulation shows that the new MDI-QKD protocol has high key generation rate and low error rate. Moreover, the secure communication distance can be up to 450 km.

  相似文献   

6.

The most typical case of applying technology and communication technology to life may be the popular smart home series. Users can remotely control smart devices through mobile phones, which is convenient and fast, greatly changing people’s way of life. However, the safe login of smart devices has become a thorny problem. With the emergence of quantum computer, the common encryption method cannot prevent quantum attacks. In addition, a family often has multiple smart devices and multiple family members. Each user can log in to multiple smart devices, and each device can also be logged in by multiple users. Therefore, in view of the above situation, we propose a multi-party quantum session key agreement protocol based on Bell states and single particles, which can be used for multiple participants to negotiate session keys together, and improve the efficiency of users logging in and using smart devices. Moreover, our protocol ensures that each party has an equal opportunity to decide the final shared key, no party can determine the final key individually. Furthermore, security and efficiency analysis show that our protocol can achieve ideal results under the existing quantum technology.

  相似文献   

7.
A protocol for the quantum secure multi-party summation based on two-particle Bell states is proposed. In this protocol, two-particle Bell states are used as private information carriers. Without using the entangled character of Bell states, we also use Pauli matrices operations to encode information and Hadamard matrix to extract information. The proposed protocol can also resist various attacks and overcomes the problem of information leakage with acceptable efficiency. In theory, our protocol can be used to build complex secure protocols for other multiparty computations and also lots of other important applications in distributed networks.  相似文献   

8.

In this paper, a controlled quantum dialogue protocol is designed based on five-qubit entangled states. One five-qubit entangled state can be used to exchange one communicant’s two private bits with the other communicant’s two private bits under the control of an honest supervisor. Security analysis turns out that it can overcome the information leakage problem and can resist the active attacks from an outside attacker. The designed protocol only needs single-particle measurements and Bell state measurements, both of which can be realized with current technologies.

  相似文献   

9.
A multi-party semi-quantum key agreement (SQKA) protocol based on delegating quantum computation (DQC) model is proposed by taking Bell states as quantum resources. In the proposed protocol, the participants only need the ability of accessing quantum channel and preparing single photons {|0〉, |1〉, |+〉, |?〉}, while the complicated quantum operations, such as the unitary operations and Bell measurement, will be delegated to the remote quantum center. Compared with previous quantum key agreement protocols, this client-server model is more feasible in the early days of the emergence of quantum computers. In order to prevent the attacks from outside eavesdroppers, inner participants and quantum center, two single photon sequences are randomly inserted into Bell states: the first sequence is used to perform the quantum channel detection, while the second is applied to disorder the positions of message qubits, which guarantees the security of the protocol.  相似文献   

10.
尹逊汝  马文平  申冬苏  王丽丽 《物理学报》2013,62(17):170304-170304
提出了基于两粒子纠缠态的一个三方量子密钥协商协议. 方案中的三个参与者是完全对等的, 且对建立的共享密钥具有相同的贡献. 除此之外, 三方中的任何一方或两方都不能事先单独决定共享密钥. 安全分析表明本协议既能抵抗外部窃听者的攻击, 又能抵抗内部参与者攻击. 关键词: 量子密码学 量子密钥协商 Bell态  相似文献   

11.

A multiparty quantum key agreement protocol based on three-photon entangled states is proposed. In this scheme, the quantum channel between all parties is that of a closed loop, in which the qubit transmission is one-way. Each party can obtain the sum of the other parties’ secret key values through the coding rules instead of extracting their private keys. The shared secret key cannot be determined by any subset of all the participants except the universal set and each party makes an equal contribution to the final key. Moreover, the security analysis shows our protocol can resist both outside attacks and inside attacks.

  相似文献   

12.
Based on the continuous variable GHZ entangled states, an efficient three-party quantum dialogue protocol is devised, where each legitimate communication party could simultaneously deduce the secret information of the other two parties with perfect efficiency. The security is guaranteed by the correlation of the continuous variable GHZ entangled states and the randomly selected decoy states. Furthermore, the three-party quantum dialogue protocol is directly generalized to an N-party quantum dialogue protocol by using the n-tuple continuous variable GHZ entangled states.  相似文献   

13.
Shurupov  A. P.  Kulik  S. P. 《JETP Letters》2008,88(9):636-640

The operational inclusion of the subclass of entangled states in a quantum key distribution protocol based on biphoton-ququarts is analyzed. Four Bell states are proposed to be used as test states to estimate the error level, leaving the subclass of 12 factorized polarization states of biphotons as information states. The elementary analysis of two strategies for an attack on a quantum communication channel, as well as of the key generation rate, has been performed.

  相似文献   

14.
The difficulty of quantum key agreement is to realize its security and fairness at the same time.This paper presents a new three-party quantum key agreement protocol based on continuous variable single-mode squeezed state.The three parties participating in the agreement are peer entities,making same contributions to the final key.Any one or two participants of the agreement cannot determine the shared key separately.The security analysis shows that the proposed protocol can resist both external and internal attacks.  相似文献   

15.

Recently, a multiparty quantum direct secret sharing protocol with Bell states was presented (Song et al., Int. J Theor. Phys. 57, 1559, 2018). In this protocol, the secret message of the dealer is directly encoding into the transmitted particles. All agents obtain their pieces of secret by making Bell state measurement on their receiving particles, then cooperate to recover the dealer’s secret. However, as we show, this protocol is insecure, because an outside attacker or two special dishonest agents can eavesdrop the secret fully. Furthermore, an improved version of this protocol is proposed, which can stand against the presented attacks.

  相似文献   

16.

A quantum protocol for millionaire problem based on commutative encryption is proposed. In our protocol, Alice and Bob don’t have to use the entangled character, joint measurement of quantum states. They encrypt their private information and privately get the result of their private information with the help of a third party (TP). Correctness analysis shows that the proposed protocol can be used to get the result of their private information correctly. The proposed protocol can also resist various attacks and overcomes the problem of information leakage with acceptable efficiency. In theory, our protocol can be used to build complex secure protocols for other multiparty computation problems and also have lots of other important applications in distributed networks.

  相似文献   

17.

In this paper, a quantum sealed-bid protocol based on semi-quantum bidders is proposed. The protocol uses Bell states to encrypt message and realizes the process that bidders can directly transmit bidding information to the auction center safely. Its essence is a semi-quantum secure direct communication protocol using Bell states. Unlike most similar protocols, our scheme eliminates the trusted third-party Trent and sets the auction center Charlie as completely honest. Considering that the auction involves human activities, too many quantum servers are not only costly, but also unrealistic. Therefore, we set the bidders as semi-quantum users and implement the Vickrey auction. In addition, the security analysis shows that our scheme has high security and is completely feasible.

  相似文献   

18.
By utilizing the delocalized correlation of entangled states in quantum information theory, a novel method on acknowledgments of quantum information among three-party is presented, and then two three-party quantum network communication protocols based on quantum teleportation are presented, namely, three-party stop-wait quantum communication protocol and three-party selective automatic repeat quantum communication protocol. In the two proposed protocols, the data frames composed of qubits are teleported via three-party quantum teleportation, the two receivers simultaneously receive quantum frames from the sender, and then return quantum acknowledgment frames or quantum negative acknowledgment frames via quantum entanglement channels. The sender simultaneously receives and deals with quantum acknowledgment frames and quantum negative acknowledgment frames from the two receivers, thus the processing delay on returning quantum frames is reduced. And due to the transience of transferring quantum information, the returning of quantum acknowledgment frames and quantum negative acknowledgment frames are completed instantaneously, the proposed protocols reduce the transmission delay and improve the communication efficiency. During the whole course of communications, the classical channels are only used to transmit the measurement message, so the burdens of classical channels are reduced.  相似文献   

19.
Quantum Key Distribution Scheme Based on Dense Encoding in Entangled States   总被引:1,自引:0,他引:1  
A quantum key distribution protocol, based on the quantum dense encoding in entangled states, is presented. In this protocol, we introduce an encoding process to encode two classical bits information into one of the four one-qubit unitary operations implemented by Alice and the Bell states measurement implemented by Bob in stead of direct measuring the previously shared Einstein-Podolsky-Rosen pairs by both of the distant parties, Alice and Bob. Considering the practical application we can get the conclusion that our protocol has some advantages. It not only simplifies the measurement which may induce potential errors, but also improves the effectively transmitted rate of the generated qubits by the raw key. Here we also discuss eavesdropping attacks against the scheme and the channel loss.  相似文献   

20.

We investigate that the average fidelity of the standard quantum teleportation communication protocol when the quantum channel is affected by different local collective noise environments frequently encountered in real quantum communication protocol. We show that the quantum teleportation efficiency can be enhanced when the noise is unavoidable by choose the fit Bell state as the quantum channel, especially we can get perfect quantum teleportation efficiency under the local collective Pauli σy noise environment. Our work can shed some light on the application of practical standard quantum teleportation communication protocol.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号