首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Reversible logic has been considered as an important solution to the power dissipation problem in the existing electronic devices. Many universal reversible libraries that include more than one type of gates have been proposed in the literature. This paper proposes a novel reversible n-bit gate that is proved to be universal for synthesizing reversible circuits. Reducing the reversible circuit synthesis problem to permutation group allows Schreier-Sims Algorithm for the strong generating set-finding problem to be used in the synthesize of reversible circuits using the proposed gate. A novel optimization rules will be proposed to further optimize the synthesized circuits in terms of the number of gates, the quantum cost and the utilization of library to achieve better results than that shown in the literature.

  相似文献   

2.

Multiple valued quantum logic is a promising research area in quantum computing technology having several advantages over binary quantum logic. Adder circuits as well as subtractor circuits are the major components of various computational units in computers and other complex computational systems. In this paper, we propose a quaternary quantum reversible half-adder circuit using quaternary 1-qudit gates, 2-qudit Feynman and Muthukrishnan-Stroud gates. Then we propose a quaternary quantum reversible full adder and a quaternary quantum parallel adder circuit. In addition, we propose a quaternary quantum reversible parallel adder/subtractor circuit. The proposed designs are compared with existing designs and improvements in terms of hardware complexity, quantum cost, number of constant inputs and garbage outputs are reported.

  相似文献   

3.

One of the emerging technology that can be used for replacing CMOS technology is Quantum-dot Cellular Automata (QCA) technology. Counter circuits are widely used circuits in the design of digital circuits. This paper presents and evaluates circuits for 2-, 3-, 4-, and 5-bit coplanar counter in the QCA technology. The designed QCA coplanar counter circuits are based on the modified D-Flip-Flop (D-FF) circuit that is designed in this paper. The designed QCA circuits are implemented and verified by using QCADesigner tool version 2.0.3. The results show that the designed circuits for 2-, 3-, 4-, and 5-bit coplanar counter contain 44 (0.03 μm2), 93 (0.07 μm2), 160 (0.13 μm2), and 245 (0.2 μm2) quantum cells (area). The comparison results indicate that the designed circuits have advantages compared to other QCA circuits in terms of cost, area, and cell count.

  相似文献   

4.

Edge extraction is a basic task in image processing. This paper proposes a quantum image edge extraction algorithm based on improved sobel operator for the generalized quantum image representation (GQIR) to solve the real-time problem. The quantum image model of GQIR can store arbitrary quantum images with a size of H × W. Our scheme can calculate the gradients of image intensity of all the pixels simultaneously. Then, the concrete circuits of quantum image edge extraction algorithm are implemented by using a series of quantum operators which have been designed. Compared with existing quantum edge extraction algorithms, our scheme can achieve more accurate edge extraction, especially for diagonal edges. Finally, the complexity of the quantum circuits were been analyzed based on the basic quantum gates and give the simulation experiment results on classical computer.

  相似文献   

5.
6.

Speech recognition technology is widely used in many applications for man - machine interaction. To face more and more speech data, the computation of speech processing needs new approaches. The quantum computation is one of emerging computation technology and has been seen as useful computation model. So we focus on the basic operation of speech recognition processing, the voice activity detection, to present quantum endpoint detection algorithm. In order to achieve this algorithm, the n-bits quantum comparator circuit is given firstly. Then based on QRDA(Quantum Representation of Digital Audio), a quantum endpoint detection algorithm is presented. These quantum circuits could efficient process the audio data in quantum computer.

  相似文献   

7.

The quantum-dot cellular automata (QCA) were highly regarded due to its high operating frequency and significantly low power consumption. One of the most useful circuits in processors architecture is counter. This paper presents effective designs and arrangement of QCA based counter-circuits. In this study new counter circuits in QCA technology are designed and precise simulation are done using the QCADesigner. Three, four and five bits counters are proposed in this paper in QCA technology. A comparison is made between the past and recent designs to illustrate which method is better and more efficient in terms of area, complexity, number of cells, and delay. For example, the proposed three bit shift register has 174 quantum cells, 0.2μm2 occupied area and three QCA clock cycles delay.

  相似文献   

8.
Abstract

On-chip integrated photonic circuits are crucial for further progress toward quantum technologies and in the science of quantum optics. The quantum controlled-Z gate is an example of the maximally entangling gate, which is universal for quantum computing when coupled with single-qubit gates. This article demonstrates a deterministic controlled-Z photonic quantum gate based on titanium in-diffused channel waveguides in which polarization and modal degrees of freedom of a single photon are used for encoding the control and target qubits, respectively.  相似文献   

9.

Power dissipation problem is one of the most challenging problems in designing conventional electronic circuits. One of the best approaches to overcome this problem is to design reversible circuits. Nowadays, reversible logic is considered as a new field of study that has various applications such as optical information processing, design of low power CMOS circuits, quantum computing, DNA computations, bioinformatics and nanotechnology. Due to the vulnerability of the digital circuits to different environmental factors, the design of circuits with error-detection capability is considered a necessity. Parity preserving technique is known as one of the most famous methods for providing error-detection ability. Multiplication operation is considered as one of the most important operations in computing systems, which can play a significant role in increasing the efficiency of such systems. In this paper, two efficient 4-bit reversible multipliers are proposed using the Vedic technique. The Vedic technique is able to increase the speed of multiplication operation by producing partial products and their sums simultaneously in a parallel manner. The first architecture lacks the parity preserving potential, while the second architecture has the ability parity preserving. Since a 4-bit Vedic multiplier includes 2-bit Vedic multipliers and 4-bit ripple carry adders (RCA), so in the first design, TG, PG and FG gates have been used to design an efficient 2-bit reversible Vedic multiplier, as well as PG gate and HNG block have been applied as a half-adder (HA) and full-adder (FA) in the 4-bit RCAs. Also, in the second design, 2-bit parity preserving reversible Vedic multiplier has been designed using FRG, DFG, ZCG and PPTG gates as well as ZCG and ZPLG blocks have been utilized as HA and FA in the 4-bit RCAs. Proposed designs are compared in terms of evaluation criteria of circuits such as gate count (GC), number of constant inputs (CI), number of garbage outputs (GO), quantum cost (QC), and hardware complexity. The results of the comparisons indicate that the proposed designs are more efficient compared to available counterparts.

  相似文献   

10.
The research work on the quantum effects in mesoscopic circuits has undergone a rapid development recently, however the whole quantum theory of the mesoscopic circuits should consider the discreteness of the electric charge. In this paper, based on the fundamental fact that the electric charge takes discrete values, the finite-difference Schrodinger equation of.the mesoscopic RLC circuit with a source is achieved. With a unitary transformation, the Schrodinger equation becomes the standard Mathieu equation, then the energy spectrum and the wave functions of the system are obtained. Using the WKBJ method, the average of currents and square of the current are calculated. The results show the existence of the current fluctuation, which causes noise in the circuits. This paper is an application of the whole quantum mesoscopic circuits theory to the fundamental circuits, and the results will shed light on the design of the miniation circuits, especially on the purpose of reducing quantum noise coherent controlling of the mesoscopic quantum states.  相似文献   

11.
The research work on the quantum effects in mesoscopic circuits has undergone a rapid development recently, however the whole quantum theory of the mesoscopic circuits should consider the discreteness of the electric charge. In this paper, based on the fundamental fact that the electric charge takes discrete values, the finite-difference Schrodinger equation of the mesoscopic RLC circuit with a source is achieved. With a unitary transformation, the Schrodinger equation becomes the standard Mathieu equation, then the energy spectrum and the wave functions of the system are obtained. Using the WKBJ method, the average of durrents and square of the current are calculated. The results show the existence of the current fluctuation, which causes noise in the circuits. This paper is an application of the whole quantum mesoscopic circuits theory to the fundamental circuits, and the results will shed light on the design of the miniation circuits, especially on the purpose of reducing quantum noise coherent controlling of the mesoscopic quantum states.  相似文献   

12.

Quantum-dot Cellular Automata (QCA) is novel prominent nanotechnology. It promises a substitution to Complementary Metal–Oxide–Semiconductor (CMOS) technology with a higher scale integration, smaller size, faster speed, higher switching frequency, and lower power consumption. It also causes digital circuits to be schematized with incredible velocity and density. The full adder, compressor, and multiplier circuits are the basic units in the QCA technology. Compressors are an important class of arithmetic circuits, and researchers can use quantum compressors in the structure of complex systems. In this paper, first, a novel three-input multi-layer full-adder in QCA technology is designed, and based on it, a new multi-layer 4:2 compressor is presented. The proposed QCA-based full-adder and compressor uses an XOR gate. The proposed design offers good performance regarding the delay, area size, and cell number comparing to the existing ones. Also, in this gate, the output signal is not enclosed, and we can use it easily. The accuracy of the suggested circuits has been assessed with the utilization of QCADesigner 2.0.3. The results show that the proposed 4:2 compressor architecture utilizes 75 cell and 1.25 clock phases, which are efficient than other designs.

  相似文献   

13.
A protocol for three-party controlled quantum teleportation is discussed. It is shown that an unknown two-particle entanglement can be teleported to any one of two receivers via the only one three-particle W state. We summarize all different unitary transformations performed by the receiver with a concise formula. The quantum circuits for the generalized measurement described by positive operator-valued measure (POVM), which is utilized to probabilistically distinguish the two non-orthogonal states, are explicitly constructed by means of quantum Toffoli gates. The efficient quantum circuits for implementing the teleportation are also provided.  相似文献   

14.
We present a theoretical study and discussion of computationally useful nanoelectronic circuits which use adaptive control methods both to achieve the circuit function and to compensate for unpredictable nonuniformities in the circuit environment. In the regime where the scaling of conventional digital electronics breaks down, nanoelectronic circuitry will be required to perform robustly in the presence of inevitable device–device interactions, sensitivity to circuit parameters of quantum devices, and deviations from ideal circuit design. To examine the role of adaption in addressing these issues, we focus on a specific class of scaleable circuit architectures composed of Coulombically interacting polarizable anisotropic quantum dots which include input polarization dots, output polarization dots, and an array of processing dots. We implement the adaptive control of these circuits by assuming that particular features of the processing dots such as energy barriers, charge, shape, or orientation can be experimentally modified. A method of adaptive feedback is used to modify the processing dots and produce desired correlations between the input and output dot polarizations as computed by the circuit. A variational quantum Monte Carlo method has been used to simulate the many-body response of model GaAs dot circuits in which the mutual orientation of the dots is adapted to successfully achieve different desired patterns of correlation. We demonstrate the robustness of the adaptive circuits for circuit nonuniformities and for sensitivity to circuit parameters due to quantum effects.  相似文献   

15.

The novel emerging technology, QCA technology, is a candidate for replacing CMOS technology. Full Adder (FA) circuits are also widely used circuits in arithmetic circuits design. In this paper, two new multilayer QCA architectures are presented: one-bit FA and 4-bit Ripple Carry Adder (RCA). The designed one-bit multilayer FA architecture is based on a new XOR gate architecture. The designed 4-bit multilayer QCA RCA is also developed based on the designed one-bit multilayer QCA FA. The functionality of the designed architectures are verified using QCADesigner tool. The results indicate that the designed architecture for 4-bit multilayer QCA RCA requires 5 clock phases, 125 QCA cells, and 0.17 μm2 area. The comparison results confirm that the designed architectures provide improvements compared with other adder architectures in terms of cost, cell count, and area.

  相似文献   

16.

We analytically study the dynamical behavior of the quantum coherence of a single-qubit coupled to a bosonic reservoir at zero temperature via plugging additional non-interacting qubits into the reservoir in both Markovian and non-Markovian regimes. The influences of detuning, memory effects and number of additional qubits on the dynamics of the quantum coherence are considered. It is found that, via increasing the number of the additional qubits in the reservoir, the quantum coherence can be preserved. Moreover, the method based on the combination of larger effective detuning, the stronger non-Markovian effects and the more number of additional qubits, can more effectively prevent the loss of the quantum coherence.

  相似文献   

17.
18.
The quantum state preparation involved in quantum information processing greatly depends on the quantum computer models. In this paper we give a novel scheme for some quantum states preparation without any decomposition of global quantum gates. Our circuit reduces the exponential CNOT gates to polynomial of qubit numbers, i.e., n(n?1)/2 without requirements of quantum register. And the depth is changed from the currently known exponential circuits to n blocks, or polynomial for its detailed implementation. This method is also useful for multi-level quantum systems and expected to help in designing and building large-scale quantum applications using present physical technologies.  相似文献   

19.
In the field of quantum information,the acquisition of information for unknown quantum states is very important.When we only need to obtain specific elements of a state density matrix,the traditional quantum state tomography will become very complicated,because it requires a global quantum state reconstruction.Direct measurement of the quantum state allows us to obtain arbitrary specific matrix elements of the quantum state without state reconstruction,so direct measurement schemes have obtained...  相似文献   

20.
Measurement-based quantum computation in an optical setup shows great promise towards the implementation oflarge-scale quantum computation. The difficulty of measurement-based quantum computation lies in the preparation ofcluster state. In this paper, we propose the method of generating the large-scale cluster state, which is a platform formeasurement-based quantum computation. In order to achieve more complex quantum circuits, the preparation protocolof N-photon cluster state will be proposed as a generalization of the preparation of four- and five-photon cluster states.Furthermore, our proposal is experimentally feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号