首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Electroanalysis》2006,18(4):379-390
Combining vapor‐surface sol‐gel deposition of titania with alternate adsorption of oppositely charged iron heme proteins provided ultrathin {TiO2/protein}n films with reversible voltammetry extended to 15 TiO2/protein bilayers, more than twice that of more conventional polyion‐protein or nanoparticle‐protein films made by alternate layer‐by‐layer adsorption. Catalytic activity toward O2, H2O2, and NO was also improved significantly compared to the conventionally fabricated films. The method involves vaporization of titanium butoxide into thin films of water, forming porous TiO2 sol‐gel layers. Myoglobin (Mb), hemoglobin (Hb), and horseradish peroxidase (HRP) were assembled by adsorption alternated with the vapor‐deposited TiO2 layers. Improved electrochemical and catalytic performance may be related to better film permeability leading to better mass transport within the films, as suggested by studies with soluble voltammetric probes, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The electrochemical and electrocatalytic activity of the films can be controlled by tailoring the amount of water with which the metal alkoxide precursor vapor reacts and the number of bilayers deposited in the assembly.  相似文献   

2.
In this work, myoglobin (Mb) and sulfonated‐β‐cyclodextrin (S‐CD) were assembled into {S‐CD/Mb}n layer‐by‐layer films on solid substrates. In pH 7.0 buffers, the {S‐CD/Mb}n films assembled on electrodes showed a pair of well‐defined and nearly reversible CV peaks at about ?0.35 V vs. SCE. The stable CV response of {S‐CD/Mb}n films could be used to electrocatalyze reduction of oxygen and hydrogen peroxide in solution. For comparison, another modified β‐cyclodextrin, carboxyethyl‐β‐cyclodextrin (C‐CD), was also assembled with Mb into {C‐CD/Mb}n multilayer films. The driving forces of the assembly were explored and discussed.  相似文献   

3.
Two polysaccharides hydroxyethyl cellulose ethoxylate (HECE) and hyaluronic acid (HA) were assembled into {HECE/HA}n layer‐by‐layer films on electrodes. The films were then immersed in myoglobin (Mb) solutions to load Mb into the films. The Mb‐loaded films showed a nearly reversible cyclic voltammetric (CV) peak pair at ?0.34 V vs. SCE in pH 7.0 buffers. The effect of ionic strength in Mb loading solutions and CV testing solutions on the CV response of the films was investigated. The direct electrochemistry of Mb loaded in the films could also be used to electrocatalyze the reduction of oxygen and H2O2 in solution.  相似文献   

4.
The ionic strength in supporting electrolyte solution had a significant influence on the electrochemical and electrocatalytic behaviors of myoglobin (Mb) in {HA/Mb}n films, which were assembled layer-by-layer on pyrolytic graphite (PG) electrodes with oppositely charged hyaluronic acid (HA) and Mb. The results of cyclic voltammetry (CV), quartz crystal microbalance (QCM), scanning electron microscopy (SEM), rotating disk voltammetry (RDV), and electrochemical impedance spectroscopy (EIS) showed that after incubation with testing solution at high concentration of salt (CKCl), the {HA/Mb}n films swelled and the film permeability was enhanced, suggesting that the external salt ions and accompanied water molecules in the exposure solution are incorporated into the films. Systematic investigation of the type and size effect of counterions in supporting electrolyte solution on the electrochemical responses for the {HA/Mb}n films and the positive shift of the formal potential (E degrees ') with CKCl suggest that it is cationic rather than anionic counterions that control the electrode process of {HA/Mb}n films at PG electrodes with electron hopping mechanism. The salt-induced swelling of {HA/Mb}n films facilitated the transportation of counterions, and then accelerated the electron transfer of Mb in the films with the underlying electrodes, making the film electrodes show better CV responses. The comparative study showed that only Mb layer-by-layer films assembled with "soft" and flexible polyions could demonstrate the salt-induced effect and that the {HA/Mb}n films showed better swelling capability than {PSS/Mb}n films (PSS = poly(styrenesulfonate)) due to the unique character of HA.  相似文献   

5.
Weak polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) were assembled into {PAH/PAA}n layer‐by‐layer films on electrodes. The cyclic voltammetry (CV) response of ferrocenecarboxylic acid (Fc(COOH)) at {PAH/PAA}5 film electrodes assembled under the specific condition showed pH‐sensitive “on‐off” switching property. This property was further used to control the electrocatalytic oxidation of glucose by glucose oxidase (GOD) with Fc(COOH) as the electron transfer mediator, so that the pH‐switchable bioelectrocatalysis could be realized. The mechanism of pH‐sensitive behavior of the system was explored and believed to originate from the pH‐dependent structure change of the films.  相似文献   

6.
《Electroanalysis》2006,18(5):471-477
The precursor film was first formed on the Au electrode surface based on the self‐assembly of L ‐cysteine and the adsorption of gold colloidal nanoparticles (nano‐Au). Layer‐by‐layer (LBL) assembly films of toluidine blue (TB) and nano‐Au were fabricated by alternately immersing the electrode with precursor film into the solution of toluidine blue and gold colloid. Cyclic voltammetry (CV) and quartz crystal microbalance (QCM) were adopted to monitor the regular growth of {TB/Au} bilayer films. The successful assembly of {TB/Au}n films brings a new strategy for electrochemical devices to construct layer‐by‐layer assembly films of nanomaterials and low molecular weight materials. In this article, {TB/Au}n films were used as model films to fabricate a mediated H2O2 biosensor based on horseradish peroxidase, which responded rapidly to H2O2 in the linear range from 1.5×10?7 mol/L to 8.6×10?3 mol/L with a detection limit of 7.0×10?8 mol/L. Morphologies of the final assembly films were characterized with scanning probe microscopy (SPM).  相似文献   

7.
After being treated by mixed acids, single-walled carbon nanotubes (SWNTs) were shortened and had negatively charged groups on the surface. Positively charged hemoglobin or myoglobin at pH 5.0 was successfully assembled with SWNTs into layer-by-layer films on solid surfaces, designated as {SWNT/protein} n . While only those proteins in the first few bilayers closest to the electrode surface exhibited electroactivity, the {SWNT/protein} n films demonstrated a much higher fraction of electroactive proteins and better controllability in film construction compared with cast films of the proteins and carbon nanotubes. The proteins in the {SWNT/protein} n films retained their near-native structure at medium pH. The stable protein film electrode showed good electrocatalytic properties toward reduction of oxygen and hydrogen peroxide, demonstrating the potential application of the {SWNT/protein} n films as a new type of biosensor based on the direct electrochemistry of proteins without using mediators. Figure Cyclic voltammograms at 0.2 V s−1 in pH 7.0 buffers with different number of bilayers (n) for layer-by-layer {single-walled carbon nanotube/hemoglobin} n films.  相似文献   

8.
Multilayers of myoglobin (Mb) with ionic liquid 1‐ethyl‐3‐methylimidazolium tetrafluoroborate ([EMIM]BF4) was assembled on carbon ionic liquid electrode (CILE) based on the electrostatic attraction between the negatively charged Mb and the positively charged imidazolium ion of IL. The CILE was fabricated with 1‐ethyl‐3‐methylimidazolium ethylsulfate ([EMIM]EtOSO3) as the modifier, which exhibited imidazolium ion on the electrode surface. Then Mb molecules were assembled on the surface of CILE step‐by‐step to get a {IL/Mb}n multilayer film modified electrode. UV‐Vis adsorption and FT‐IR spectra indicated that Mb remained its native structure in the IL matrix. In deaerated phosphate buffer solution (pH 7.0) a pair of well‐defined quasi‐reversible redox peaks appeared with the apparent formal potential (E0′) as ‐0.212 V (vs. SCE), which was the characteristic of Mb heme Fe(III)/Fe(II) redox couples. The results indicated that the direct electron transfer of Mb was realized on the modified electrode. The {IL/Mb}n/CILE displayed excellent electrocatalytic ability to the trichloroacetic acid reduction in the concentration range from 2.0 to 22.0 mmol/L with the detection limit of 0.6 mmol/L (3σ). The proposed method provides a new platform to fabricate the third generation biosensor based on the self‐assembly of redox protein with ILs.  相似文献   

9.
Nanocomposite films [Ag/(PAH‐PSS)nPAH]m were fabricated on a silicon substrate using a time‐ and cost‐efficient spin‐assisted layer‐by‐layer (SA‐LbL) self‐assembly technique. A virtually monolayer‐like layer of self‐assembled silver nanoparticles was formed when deposition time increased to 30 min. It was found that polymer multilayers could effectively decrease the resistivity of silver nanoparticle monolayer, which was far higher than that of bulk silver metal; however, the resistivity of Ag/(PAH‐PSS)nPAH multilayer films increased along with the increasing of the number of polymer bilayers. XPS investigations showed that silver nanoparticles were partially oxidized, which might be the major cause of the high resistivity of silver nanoparticle monolayer. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
《Analytical letters》2012,45(2-3):242-250
Natural polymer polysaccharides chitosan (CS) was successfully assembled with phytic acid (PA) into {PA/CS}n layer-by-layer films. Myoglobin (Mb) could be gradually “absorbed” or loaded into {PA/CS}n films when the films were immersed into Mb solutions, forming {PA/CS}n-Mb films. The {PA/CS}n-Mb films demonstrated well-defined and quasi-reversible cyclic voltammetry (CV) responses for Mb FeIII/FeII redox couple and were used to catalyze electrochemical reduction of oxygen and hydrogen peroxide. The interaction between Mb and {PA/CS}n films was explored and discussed, which suggested that the electrostatic attraction might play a major role in loading Mb into the films. This new kind of film incorporated with redox proteins could be used to fabricate the new type of biosensors or bioreactors without using mediators.  相似文献   

11.
A series of tributyltin(IV) complexes of 2‐[(E)‐2‐(3‐formyl‐4‐hydroxyphenyl)‐1‐diazenyl]benzoic acid and 4‐[((E)‐1‐{2‐hydroxy‐5‐[(E)‐2‐(2‐carboxyphenyl)‐1‐diazenyl]phenyl}methylidene)amino]aryls have been investigated by electrospray mass spectrometry (ESI‐MS) and tandem mass spectrometry (MSn) techniques. The assignments are facilitated by agreement between observed and calculated isotopic patterns and MSn studies. Single‐crystal X‐ray crystallography of (Bu3Sn[O2CC6H4{N?N(C6H3‐4‐OH(C(H)?NC6H4OCH3‐4))}‐o])n reveals a polymeric structure. Toxicity studies of the tributyltin(IV) complexes of the 4‐[((E)‐1‐{2‐hydroxy‐5‐[(E)‐2‐(2‐carboxyphenyl)‐1‐diazenyl]phenyl}methylidene)amino]aryls on the second larval instar of the Aedes aegypti and Anopheles stephensi mosquito larvae are also reported. The LC50 values indicate that the complexes are effective larvicides, which range from a low of 0.36 ppm to a high of 0.69 ppm against the Ae. aegypti larvae and between 0.82 and 1.17 ppm against the An. stephensi larvae. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Sword‐like anatase TiO2 nanobelts exposed with 78 % clean {100} facets were synthesized and the facet‐dependent photoreactivity of anatase TiO2 was investigated. By quantitative comparison with the reference {001} facets, the {100} facets possessed about ten‐times higher active sites density than that on {001} facets, resulting in higher photoreaction efficiency. After the active sites density normalization, the {100} and {001} facets exhibited distinct wavelength‐dependent photocatalytic performance, attributed to the anisotropic electronic structures in TiO2 crystals.  相似文献   

13.
In this present study, biodegradable PBAT nanocomposites containing different weight percentages (1, 3, 5, 7, and 10% w/w) of TiO2 nanoparticles were prepared by using solvent casting technique, chloroform as a solvent. The microstructure and morphology of the as‐synthesized poly(butylene adipate‐co‐terephthalate) (PBAT)/TiO2 nanocomposite films were characterized by Fourier‐transform infrared, X‐ray diffraction, scanning electron microscopy, and transmission electron microscope. The thermal degradation of PBAT composites was studied by using thermogravimetric analysis. The mechanical strength of the films was improved by increasing TiO2 concentration. Tensile strength increased from 32.60 to 63.26 MPa, respectively. Barrier properties of the PBAT/TiO2 nanocomposites were investigated by using an oxygen permeability tester. The oxygen permeability (oxygen transmission rate) decreased with increasing the TiO2 nanoparticle concentrations. The PBAT/TiO2 nanocomposite films showed profound antimicrobial activity against both Gram‐positive and Gram‐negative foodborne pathogenic bacteria, namely, Escherichia coli and Staphylococcus aureus, to understand to the zone of inhibition. These results indicated that filler–polymer interaction is important and the role of the TiO2 as a reinforcement in the nanocomposites was evident. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
The interaction between {Au3(CH3N?COCH3)3} and {2,4,7‐trinitro‐9‐fluorenone} and the electronic structure and spectroscopic properties of {Au3(CH3N = COCH3)3}n·{2,4,7‐trinitro‐9‐fluorenone} (n = 1,2) are studied at the HF, MP2, and PBE levels. Secondary π‐interactions (Au‐fluorenone) were found to be the main contribution to short‐range stability in the {Au3(CH3N?COCH3)3}n·{2,4,7‐trinitro‐9‐fluorenone} complex. At the MP2 and PBE levels, Au‐C equilibrium distances of 292.3 and 304.0 pm and interaction energies of 105.3 and 24.9 kJ/mol were found, respectively. The absorption spectra of these complexes were calculated by the single excitation time‐dependent method at the PBE level. The theoretical values obtained are in agreement with the experimental range. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

15.
Glutathione‐decorated 5 nm gold nanoparticles (AuNPs) and oppositely charged poly(allylamine hydrochloride) (PAH) were assembled into {PAH/AuNP}n films fabricated layer‐by‐layer (LbL) on pyrolytic graphite (PG) electrodes. These AuNP/polyion films utilized the AuNPs as electron hopping relays to achieve direct electron transfer between underlying electrodes and redox proteins on the outer film surface across unprecedented distances >100 nm for the first time. As film thickness increased, voltammetric peak currents for surface myoglobin (Mb) on these films decreased but the electron transfer rate was relatively constant, consistent with a AuNP‐mediated electron hopping mechanism.  相似文献   

16.
This study describes a facile breath‐figure method for the preparation of honeycomb‐like porous TiO2 films with an organometallic small‐molecule precursor. Multiple characterization techniques have been used to investigate the porous films and a mechanism for the formation process of porous TiO2 films through the breath‐figure method is proposed. The pore size of the TiO2 films could be modulated by varying the experimental parameters, such as the concentration of titanium n‐butoxide (TBT) solution, the content of cosolvent, and the air flow rate. In vitro cell‐culture experiments indicate that NIH 3T3 fibroblast cells seeded on the honeycomb‐like porous TiO2 films show good adhesion, spreading, and proliferation behaviors, which suggests that honeycomb‐like porous TiO2 films are an attractive biomaterial for surface modification of titanium and its alloys implants in tissue engineering to enhance their biocompatibility and bioactivity.  相似文献   

17.
The title CdII coordination polymer, [Cd(C10H8O4)(C12H12N6)0.5(H2O)]n, has been obtained by the hydrothermal method and studied by single‐crystal X‐ray diffraction, elemental analysis, thermogravimetric analysis, IR spectroscopy and fluorescence spectroscopy. The compound forms a novel three‐dimensional framework with 3,8‐connected three‐dimensional binodal {4.52}2{42.510.612.7.83} topology. An investigation of its photoluminescence properties shows that the compound exhibits a strong fluorescence emission in the solid state at room temperature.  相似文献   

18.
Three new oxime‐based palladacycles, namely [Pd{C,N‐C6H4{C(Me)?NOH}‐2}(dppm)]ClO4 ( 1 ), [Pd2{C,N‐C6H4{C(Me)?NOH}‐2}2(dppe)2(μ‐dppe)](ClO4)2 ( 2 ) and [Pd{C,N‐C6H4{C(Me)?NOH}‐2}(dppmS2)]ClO4 ( 3 ), were synthesized by the reaction of dinuclear oxime complex [Pd{C,N‐C6H4{C(Me)?NOH}‐2}(μ‐Cl)]2 with different diphosphine ligands (dppm, dppe and dppmS2). The synthesized complexes were characterized using Fourier transform infrared, 31P NMR, 1H NMR and 13C NMR spectroscopic methods and elemental analyses, and their molecular structures were elucidated using X‐ray crystallography. The structure of 2 is worthy of note as it is the first oxime palladacycle where there are both bridging (P–) and chelating (P^P) dppe ligands, giving rise to a dinuclear complex. The palladium atom is in a five‐coordinate, square pyramidal P3NC environment, while in 3 the palladium atom is in a distorted square planar environment, coordinated by the oxime ligand and a chelating (S^S) dppmS2 ligand. These complexes were employed as efficient catalysts for the Suzuki–Miyaura cross‐coupling reaction of several aryl bromides with phenylboronic acid. The in vitro cytotoxicity of the compounds was also evaluated against human tumour cell lines (HT29, A549 and HeLa) using the MTT assay method. The results indicate that the dinuclear complex 2 has greater catalytic and anticancer activity in comparison with the mononuclear complexes 1 and 3 .  相似文献   

19.
Core–shell TiO2 microspheres possess a unique structure and interesting properties, and therefore, they have received much attention. The high‐energy facets of TiO2 also are being widely studied for the high photocatalytic activities they are associated with. However, the synthesis of the core–shell structure is difficult to achieve and requires multiple‐steps and/or is expensive. Hydrofluoric acid (HF), which is highly corrosive, is usually used in the controlling high‐energy facet production. Therefore, it is still a significant challenge to develop low‐temperature, template‐free, shape‐controlled, and relative green self‐assembly routes for the formation of core–shell‐structured TiO2 microspheres with high‐energy facets. Here, we report a template‐ and hydrofluoric acid free solvothermal self‐assembly approach to synthesize core–shell TiO2 microspheres covered with high‐energy {116}‐facet‐exposed nanosheets, an approach in which 1,4‐butanediamine plays a key role in the formation of nanosheets with exposed {116} facets and the doping of nitrogen in situ. In the structure, nanoparticle aggregates and nanosheets with {116} high‐energy facets exposed act as core and shell, respectively. The photocatalytic activity for degradation of 2,4,6‐tribromophenol and Rhodamine B under visible irradiation and UV/Vis irradiation has been examined, and improved photocatalytic activity under visible light owing to the hierarchical core–shell structure, {116}‐plane‐oriented nanosheets, in situ N doping, and large surface areas has been found.  相似文献   

20.
A series of 3D d–f heterometallic coordination polymers, {[Ln2Zn(Pzdc)4(H2O)6] · 2H2O}n [Ln = La ( 1 ), Pr ( 2 ), Nd ( 3 ), Sm ( 4 ), Eu ( 5 ), Gd ( 6 ), Tb ( 7 ), Dy ( 8 )] (H2Pzdc = 2,3‐pyrazine dicarboxylic acid), were synthesized by one‐pot reactions under hydrothermal conditions. X‐ray crystallographical analysis and powder X‐ray diffraction analysis reveal that the complexes 1 – 8 are isostructural and adopt a multi‐parallel quadrilateral channel network structure with {4.6 · 2}2{4 · 2.6 · 2.8 · 2}{6 · 3}2{6 · 5.8}2 topology, in which the central LnIII ion is nine‐coordinate by four oxygen atoms and two nitrogen atoms from four ligands and three oxygen atoms from three coordinated H2O molecules and the central ZnII ion is six‐coordinate by four oxygen atoms and two nitrogen atoms from four ligands. Moreover, the photophysical properties related to the electronic transition for complexes 4 , 5 , 7 , and 8 were investigated by the excitation and emission spectra as well as the emission lifetimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号