首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Electroanalysis》2004,16(16):1330-1335
A poly(vinyl chloride) membrane sensor based on oxalic acid bis (cyclohexylidene hydrazide) as membrane carrier was prepared and investigated as a Cr(III)‐selective electrode. The electrode reveals a Nernstian behavior (slope 19.8±0.4 mV decade?1) over a wide Cr(III) ion concentration range 1.0×10?7–1.0×10?2 mol dm?3 with a very low limit of detection (i.e., down to 6.3×10?8 mol dm?3). The potentiometric response of the sensor is independent of the pH of the test solution in the pH range 1.7–6.5. The electrode possesses advantage of very fast response, relatively long lifetime and especially good selectivity to wide variety of other cations. The sensor was used as an indicator electrode, in the potentiometric titration of chromium ion and in the determination of Cr(III) in waste water and alloy samples.  相似文献   

2.
《Electroanalysis》2006,18(22):2174-2179
A new modified carbon paste electrode (CPE) based on a recently synthesized ligand of Ethyl‐2‐(benzoylamino)‐3‐(2‐hydroxy‐4‐methoxyphenyl)‐2‐propenoate (EBHMP) as a suitable carrier for Hg2+ ion was described. The electrode exhibit a super Nernstian slope of 48.5±1.0 mV per decade for Hg2+ ion over a wide concentration range from 3.0×10?7–3.1×10?2 M. The lower detection limits are 1.0×10?7 M Hg2+. The electrode has a fast response time (ca. 5 s), a satisfactory reproducibility and relatively long life time. The proposed sensor shows a fairly good selectivity toward Hg2+ ion in comparison to other common cations. The potentiometric responses are independent of the pH of the test solution in the pH range 1.0–4.0. The proposed electrode was used as an indicator electrode in potentiometric titration of mercuric ion with standard solution of EDTA. The direct determination of mercury in spiked wastewater and an amalgam sample gave results that compare favorably with those obtained by the cold vapor atomic absorption spectrometric method.  相似文献   

3.
《Analytical letters》2012,45(4):595-606
A highly sensitive polyvinyl chloride (PVC) membrane electrode, based on copper(II)-bis(N-4-methylphenyl-salicyldenaminato) complex, (CuL2), as a carrier was reported for the determination of chromate ion. The influence of membrane composition, pH, and possible interfering anions on the response of the ion selective electrode was investigated. The sensor exhibited a Nernstian slope of 29.7 mV per decade when the chromate concentration was varied between 2.0 × 10?7–1.50 × 10?2 M in a wide pH range (6.0 to 9.0). The detection limit of the ion selective electrode was 9.2 × 10?8 M. The proposed sensor was used for at least 4 months without any considerable divergence in potential. It was applied as indicator electrode in potentiometric titration of chromate ion with Pb2+ and Tl+.  相似文献   

4.
A dichromate‐selective PVC‐membrane electrode based on Quinaldine Red (an acridinium derivative) is described. The electrode exhibits rapid (< 30 s) and linear response to the activity of Cr(VI) anions in the range of 5.2 × 10?6 ?1.0 × 10?1 M dichromate with the limit of detection 2.5 × 10?6 Mof Cr2O72?. The sensor is used as an indicator electrode in potentiometric determination of Cr(VI) anions and is also suitable for end‐point indication in the titrations of proper metal ions with dichromate under laboratory conditions. The proposed electrode has been applied to the direct potentiometric determination of Cr(VI) anions in water samples with satisfactory results.  相似文献   

5.
A new chromium(III) PVC membrane sensor incorporating ptertiary‐butyl calix[4]arene as ionophore, potassium tetrakis as additive and dibutyl phthalate (DBP) as plasticizer was constructed. The electrode exhibited an excellent potentiometric response over a wide concentration range of 1.0×10?7–1.0×10?1 M with a Nernstian slope of 20±0.5 mV per decade. The detection limit was 5.0×10?8 M. The electrode showed a better performance over a pH range of 3.0–8.0, and had a short response time of about <15 s.The electrode was successfully applied to potentiometric titration of Cr (III) with EDTA and for direct determination of chromium(III) in waste water.  相似文献   

6.
《Electroanalysis》2006,18(12):1186-1192
A PVC membrane electrode using [Bzo2Me2Ph2(16)hexaeneN4] ( I ) as ionophore, oleic acid as lipophilic additive and o‐nitrophenyloctyl ether as plasticizer has been investigated as Zn(II)‐selective electrode. The membrane incorporating 34.9% (w/w) PVC, 2.3% I , 4.7% OA and 58.1% o‐NPOE gave linear response over the concentration range 2.82×10?6?1.0×10?1 M with a Nernstian slope of 28.5±0.2 mV/decade of concentration with a detection limit of 2.24×10?6 M (0.146 ppm) and showed a response time of less than 10 s and could be used in pH range 2.5–8.5. High selectivity was obtained over a wide variety of metal ions. The proposed electrode was successfully used as an indicator electrode in potentiometric titration of zinc ions with EDTA and for determination of zinc in real samples.  相似文献   

7.
A PVC membrane electrode for copper(II) ion based on a recently synthesized Schiff base as a suitable ion carrier was constructed. The electrode exhibits a Nernstian slope of 28.3 ± 0.6 mV per decade of Cu2+ over a wide concentration range of 7.0 × 10?6‐2.6 × 10?2 M with a detection limit of 5.0 × 10?6M in the pH range of 4.2–5.8. The response time is about 10s and it can be used for at least 1 month without any considerable divergence in potential. It was successfully applied as an indicator electrode in the potentiometric titration of copper ions.  相似文献   

8.
《Electroanalysis》2004,16(19):1561-1568
A new methodology, based on silver electrocatalytic deposition and designed to quantify gold deposited onto carbon paste electrode (CPE) and glassy carbon electrode (GCE), has been developed in this work. Silver (prepared in 1.0 M NH3) electrodeposition at ?0.13 V occurs only when gold is previously deposited at an adequate potential on the electrode surface for a fixed period of time. When a CPE is used as working electrode, an adequate oxidation of gold is necessary. This oxidation is carried out in both 0.1 M NaOH and 0.1 M H2SO4 at oxidation potentials. When a GCE is used as working electrode, the oxidation steps are not necessary. Moreover, a cleaning step in KCN, which removes gold from electrode surface, is included. To obtain reproducibility in the analytical signal, the surface of the electrodes must be suitably pretreated; this electrodic pretreatment depends on the kind of electrode used as working electrode. Low detection limits (5.0×10?10 M) for short gold deposition times (10 min for CPE and 5 min for GCE) were achieved with this novel methodology. Finally, sodium aurothiomalate can be quantified using silver electrocatalytic deposition and GCE as working electrode. Good linear relationship between silver anodic stripping peak and aurothiomalate concentration was found from 5.0×10?10 M to 1.0×10?8 M.  相似文献   

9.
A new modified carbon paste electrode (CPE) based on a recently synthesized ligand [2‐mercapto‐5‐(3‐nitrophenyl)‐1,3,4‐thiadiazole] (MNT), self‐assembled to gold nanoparticles (GNP) as suitable carrier for Cd(II) ion with potentiometric method are described. The proposed electrode exhibits a Nernstian slope of 29.4±1.0 mV per decade for Cd(II) ion over a wide concentration range from 3.1×10?8 to 3.1×10?4 mol L?1. The detection limit of electrode was 2.0×10?8 mol L?1 of cadmium ion. The potentiometric responses of electrode based on MNT is independent of the pH of test solution in the pH range 2.0–4.0. It has quick response with response time of about 6 s. The proposed electrode show fairly good selectivity over some alkali, alkaline earth, transition and heavy metal ions. Finally, the proposed electrode was successfully employed to detect Cd(II) ion in hair and water samples.  相似文献   

10.
Stability constant for mercury binding by commercial and natural humic acids (HA) were determined using a new potentiometric mercury(II) sensor based on dithiosalicylic acid modified carbon paste electrode. The sensor present a high selective and sensitive response to mercury(II) ions, and a low detection limit of 1.8×10?8 M. The potentiometric titrations curves of humic acids against mercury(II) ions were modeled. For 1.00×10?7 to 3.00×10?4 M mercury(II) ion concentration levels the results are consistent with the presence of two different binding sites in the humic acid macromolecule. The strongest binding sites (log K1 ranging from 10.1 to 6.8) are probably due to interaction with carboxylic acid and amine groups in the molecule, whereas weakest binding sites (log K2 ranging from 8.8 to 4.5) can be associated to phenolic groups.  相似文献   

11.
《Electroanalysis》2003,15(2):139-144
A highly selective and sensitive membrane electrode based on vanadyl salen complex (VS), which responds to monohydrogenphosphate (MHP) ions is described. The response of the sensor is Nernstian over the wide concentration range (1.0×10?1 ? 5.0×10?6 M) of MHP. The sensitivity of the electrode is high enough to permit the detection of as little as 0.6 μg/mL of MHP without any significant interference from high levels of other anions. The potentiometric selectivity coefficient data revealed negligible interference from 11 common anions. The electrode has a fast response time (<25 s), good slope stability at pH 8.2 for a period of at least eight weeks. It was successfully applied for the direct determination of monohydrogenphosphate in fertilizer and, as indicator electrode, in potentiometric titration of HPO42? ion with barium chloride.  相似文献   

12.
A composite graphite (CG) electrode modified with poly(2,6‐diaminopyridine) (PDAP) was used as solid state‐ion selective electrode for determination of mercury. The electrooxidation of monomer 2, 6 diaminopyridine (DAP) onto CG was accomplished from the 30 mM DAP in 5% H2SO4 and 0.5 M ZnSO4. The electrode displayed Nernstian response with slope of 28.4±1 mV decade−1 in concentration range of 1×10−6 to 1×10−1 M and in solution of pH 3–5. The limit of detection for electrode was 3×10−8 M with response time of 25 s. The electrode was also suitable as an indicator electrode in the potentiometric titration of Hg2+ with iodide.  相似文献   

13.
This study describes a fast and simple methodology for the preparation of Cerium (III) Hexacyanoferrate (II) (CeHCF) nanoparticles (NPs). The NPs were characterized by fourier transform infrared (FTIR), x‐ray diffraction (XRD), scanning electron microscopy (SEM) and cyclic voltammetry (CV). The CeHCF cyclic voltammogram indicate a well‐defined redox pair assigned as Fe2+/Fe3+ in the presence of cerium (III), with a formal potential of Eθ′=0.29 V (v=100 mV s?1, KNO3; 1.0 mol/L, pH 7.0). The carbon paste electrode modified with CeHCF (CeHCF‐CPE) was applied to the catalytic electrooxidation of dopamine applying Differential Pulse Voltammetry (DPV). DPV showed linear response at two concentration ranges, from 9.0×10?7 to 8.0×10?6 and 9.0×10?6 to 1.0×10?4 mol/L, with an LOD of 1.9×10?7 and 1.0×10?5 mol/L, respectively. The CeHCF‐CPE exhibited selectivity against substances commonly found in biological samples, with redox potentials close to that of dopamine, such as urea and ascorbic acid (AA). Subsequently the CeHCF‐CPE was successfully applied to the detection of dopamine in simulated urine samples, with recovery percentages ranging between 99 and 103%.  相似文献   

14.
《Analytical letters》2012,45(7):1014-1028
Abstract

In this work, we describe the construction, performance, and applications of an original ytterbium(III) sensor based on N1,N2-bis-[1-(2-hydroxy-1,2-diphenyl)ethylidene]ethanedihydrazide (BHDEH), which acts as a suitable carrier. Because it has a low detection limit of 4.2 × 10?7 M, the sensor response for the Yb(III) ion is Nernstian over a wide concentration range: four decades of concentration (1.0 × 10?6 to 1.0 × 10?2 M). The response time of the electrode is less than 10 s, it can be used in the pH range of 3.2–8.3, and its duration is at least 2 months without any considerable potential divergence. The sensor revealed very good selectivity for Yb(III) in the presence of several metal ions. To investigate the sensor analytical applicability, it was tested as an indicator electrode in the potentiometric titration of Yb(III) solution with standard EDTA solution. The proposed electrode was also used to determine fluoride ions in mouthwash.  相似文献   

15.
A highly selective PVC‐membrane electrode based on 2,6‐diphenylpyrylium fluoroborate is presented. The electrode reveals a Nernstian potentiometric response for sulfate ion over a wide concentration range (5.0 × 10?6‐1.0 × 10?1 M). The electrode has a response time of about 10 s and can be used for at least 2 months without any divergence. The proposed sensor revealed very good selectivities for sulfate over a wide variety of common organic and inorganic anions and could be used over a wide pH range (2.5–9.5). The detection limit of the sensor is 3.0 × 10?6 M. It was successfully applied to the direct determination of salbutamol, paramomycin tablets, and as an indicator electrode for potentiometric titration of sulfate ions with barium ions.  相似文献   

16.
《Electroanalysis》2006,18(16):1620-1626
A polyvinylchloride membrane sensor based on N,N′‐bis(salecylidene)‐1,2‐phenylenediamine (salophen) as membrane carrier was prepared and investigated as a Al3+‐selective electrode. The sensor exhibits a Nernstian response toward Al(III) over a wide concentration range (8.0×10?7–3.0×10?2 M), with a detection limit of 6.0×10?7 M. The potentiometric response of the sensor is independent of the pH of the test solution in the pH range 3.2–4.5. The electrode possesses advantages of very fast response and high selectivity for Al3+ in comparison with alkali, alkaline earth and some heavy metal ions. The sensor was used as an indicator electrode, in the potentiometric titration of aluminum ion and in determination of Al3+ contents in drug, water and waste water samples.  相似文献   

17.
《Electroanalysis》2004,16(24):2051-2057
A conducting polymer was electrochemically prepared on a Pt electrode with newly synthesized 3′‐(4‐formyl‐3‐hydroxy‐1‐phenyl)‐5,2′ : 5′,2″‐terthiophene (FHPT) in a 0.1 M TBAP/CH2Cl2 solution. The polymer‐modified electrode exhibited a response to proton and metal ions, especially Al(III) ions. The poly[FHPT] was characterized with cyclic voltammetry, EQCM, and applied to the analysis of trace levels of Al(III) ions. Experimental parameters affecting the response of the poly[FHPT] were investigated and optimized. Other metal ions in low concentration did not interfere with the analysis of Al(III) ions in a buffer solution at pH 7.4. The response was linear over the concentration range of 5.0×10?8–7.0×10?10 M, and the detection limit was 5.0×10?10 M using the linear sweep voltammetry (LSV). Employing the differential pulse voltammetry (DPV), the response was linear over the 1.0×10?9–5.0×10?11 M range and the detection limit was 3.0×10?11 M. The relative standard deviation at 5.0×10?11 M was 7.2% (n=5) in DPV. This analytical method was successfully verified for the analysis of trace amounts of Al(III) ions in a human urine sample.  相似文献   

18.
《Electroanalysis》2005,17(17):1534-1539
The construction, performance, and applications of a novel ytterbium(III) sensor based on N‐(2‐pyridyl)‐N′‐(2‐methoxyphenyl)‐thiourea (PMT), as an excellent carrier, in plasticized poly(vinyl chloride) PVC matrix, is described. The influences of membrane composition and pH on the potentiometric response of the sensor were investigated. The sensor exhibits a nice Nernstian response for Yb(III) ion over a wide concentration range of 4 decades of concentration (1.0×10?6–1.0×10?2 M), and a detection limit of 5.0×10?7 M. The response time of the electrodes is between 8 and 10 s, depending on the concentration of ytterbium(III) ions. The proposed sensor can be used for about 8 weeks without any considerable divergence in potential. The sensor revealed very good selectivity for Yb(III) in the presence of several metal ions. The best performance was observed for the membrane containing; 30% PVC, 59% o‐nitrophenyloctyl ether (NPOE) as solvent mediator, 7% PMT, and 4% sodium tetraphenyl borate (NaTPB). It was successfully applied as indicator electrodes in the potentiometric titration of Yb(III) with EDTA and for the determination of fluoride ion in two mouth wash formulations. The proposed La(III) sensor was found to work well under laboratory conditions. It was also used as an indicator electrode in titration of a 1.0×10?4 M of Yb(III) with a standard EDTA solution (1.0×10?2 M). It was also used for determination of Yb(III) ion in Xenotime .  相似文献   

19.
《Analytical letters》2012,45(2):284-297
Abstract

4-(2-Thiazolylazo)resorcinol (TR) was used as a new compound to play the role of an excellent ion carrier in the fabrication of an Er(III) membrane electrode. The electrode shows a very good selectivity toward Er(III) ions over a wide variety of cations, including alkali, alkaline earth, transition, and heavy-metal ions. The proposed sensor exhibits a Nernstian behavior (with slope of 19.6 ± 0.6 mV per decade) over a wide concentration range (1.0 × 10?6 to 1.0 × 10?2 M). The detection limit of the sensor is 6.6 × 10?7 M. It has a very short response time, in the whole concentration range (~10 s), and can be used for at least 12 weeks in the pH range of 2.8–9.3. The proposed sensor was successfully applied as an indicator electrode for the potentiometric titration of a Er(III) solution, with EDTA. It was also successfully applied to the F? ion determination in some mouthwashing solutions.  相似文献   

20.
A novel Cr(III) ion‐selective electrode is constructed by incorporating a new aryl amide bifunctional bridging ligand, 2,2′‐bis{[(2″‐benzylaminoformyl)phenxoyl]methyl}‐diethylether (BBPMD) as a neutral carrier into the PVC matrix. The proposed electrode, with optimum membrane composition, exhibits an excellent near‐Nernstian response for Cr3+ ion ranging from 2.8 × 10?6 to 1.0 × 10?1 mol/L with a detection limit of 8.6 × 10?7 mol/L and a slope of 19.5 ± 0.2 mV/dec in pH 3.0 nitrate buffer solution at 25 °C. It has an appropriate response time, suitable reproducibility, and good selectivity towards Cr3+ ion. The operational pH range of the proposed electrode is 2.5–6.5. The response mechanism was discussed in view of UV‐vis spectroscopy and the A. C. impedance technique. The excellent analytical features of the proposed electrode could lead to its successful application as an indicator electrode in potentiometric titration of Cr3+ ion and in the direct determination of Cr3+ ion in tea leaves and coffee samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号