首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three novel triterpenoids named chinenols A – C ( 1 – 3 ), together with two known compounds, glutin‐5‐en‐3β‐ol ( 4 ) and daucosterol ( 5 ), were isolated from the aerial part of Helwingia chinensis Batal . The structures of 1 – 3 were determined on the basis of their HR‐EI‐MS, IR, 1H‐ and 13C‐NMR (DEPT), and 2D (HMQC, HMBC, NOESY) data. Compounds 1 – 3 and 5 showed inhibition activity in an antibacterial assay.  相似文献   

2.
Our attempts to synthesize the N→Si intramolecularly coordinated organosilanes Ph2L1SiH ( 1 a ), PhL1SiH2 ( 2 a ), Ph2L2SiH ( 3 a ), and PhL2SiH2 ( 4 a ) containing a CH?N imine group (in which L1 is the C,N‐chelating ligand {2‐[CH?N(C6H3‐2,6‐iPr2)]C6H4}? and L2 is {2‐[CH?N(tBu)]C6H4}?) yielded 1‐[2,6‐bis(diisopropyl)phenyl]‐2,2‐diphenyl‐1‐aza‐silole ( 1 ), 1‐[2,6‐bis(diisopropyl)phenyl]‐2‐phenyl‐2‐hydrido‐1‐aza‐silole ( 2 ), 1‐tert‐butyl‐2,2‐diphenyl‐1‐aza‐silole ( 3 ), and 1‐tert‐butyl‐2‐phenyl‐2‐hydrido‐1‐aza‐silole ( 4 ), respectively. Isolated organosilicon amides 1 – 4 are an outcome of the spontaneous hydrosilylation of the CH?N imine moiety induced by N→Si intramolecular coordination. Compounds 1–4 were characterized by NMR spectroscopy and X‐ray diffraction analysis. The geometries of organosilanes 1 a – 4 a and their corresponding hydrosilylated products 1 – 4 were optimized and fully characterized at the B3LYP/6‐31++G(d,p) level of theory. The molecular structure determination of 1 – 3 suggested the presence of a Si?N double bond. Natural bond orbital (NBO) analysis, however, shows a very strong donor–acceptor interaction between the lone pair of the nitrogen atom and the formal empty p orbital on the silicon and therefore, the calculations show that the Si?N bond is highly polarized pointing to a predominantly zwitterionic Si+N? bond in 1 – 4 . Since compounds 1 – 4 are hydrosilylated products of 1 a – 4 a , the free energies (ΔG298), enthalpies (ΔH298), and entropies (ΔH298) were computed for the hydrosilylation reaction of 1 a – 4 a with both B3LYP and B3LYP‐D methods. On the basis of the very negative ΔG298 values, the hydrosilylation reaction is highly exergonic and compounds 1 a – 4 a are spontaneously transformed into 1 – 4 in the absence of a catalyst.  相似文献   

3.
1H and 13C nmr spectra of several N‐ and C‐substituted carbazoles (Series 1, 2, 3 and 4) were measured. Correlations between chemical shifts and substituent constants show that these parameters describe properly the substituent effect on the nmr phenomena. Atomic charge densities for carbazoles of Series 1, 2, 3 and 4 were calculated by using the semi empirical PM3 method. These values also show a linear correlation with the 13C chemical shifts. The synthesis of several carbazole derivatives 1a – 1g, 2a – 2g, 3a – 3j and 4a – 4g have been carried out according to literature procedures. The carbazoles 3i, 3j and 4c have been synthesized and fully characterized for the first time.  相似文献   

4.
The strategy of modifying phosphane ligands through substituent variation has been widely applied in coordination chemistry and catalysis. This contribution focuses on unsymmetric ferrocene diphosphanes with electronically distinct phosphane moieties, Ph2PfcCH2PAr2 (Ar=Ph, 1 ; 3,5-C6H3Me2, 2 ; and 3,5-C6H3(CF3)2, 3 ; fc=ferrocene-1,1′-diyl), which were synthesized and converted to the corresponding selenides ( 1Se – 3Se ) and Pd(0) complexes [Pd(L-κ2P,P′)(η2-ma)] ( 5 – 8 for L= 1 – 3 and dppf, ma=maleic anhydride). All compounds were characterized by NMR spectroscopy, ESI MS and elemental analysis, and the structures of 2 , 1Se ⋅ CHCl3, 2Se and 5 ⋅ PhMe were determined by X-ray diffraction analysis. In addition, the redox behavior of 1 – 3 and 5 – 8 was studied by cyclic voltammetry and rationalized through DFT calculations. The prepared Pd(0) complexes and their model compound [Pd(dppf-κ2P,P′)(η2-ma)] were employed in Pd-catalyzed C−H arylation of benzoxazole with chlorobenzene in n-butanol in the presence of K3PO4 as the base, and the catalytic results were compared with the collected characterization data, including the 1JPSe coupling constants determined for 1Se – 3Se , as a measure of ligand basicity.  相似文献   

5.
Five novel pyrazole‐coupled glucosides, 1,5‐diaryl‐1H‐pyrazol‐3‐yl 2,3,4,6‐tetra‐O‐acetyl‐β‐D ‐glucopyranosides 5a – 5e , were synthesized by the phase‐transfer catalytic reaction of 1,5‐diaryl‐1H‐pyrazol‐3‐ols 4a – 4e with acetobromo‐α‐D ‐glucose in H2O/CHCl3 under alkaline conditions, using Bu4N+Br? as catalyst. Then, glucosides 5a – 5c were deacetylated in a solution of Na2CO3/MeOH to yield the 1,5‐diaryl‐3‐(β‐D ‐glucopyranosyloxy)‐1H‐pyrazoles 6a – 6c . Their structures were characterized by 1H,1H‐COSY, 1H‐, 13C‐, and 19F‐NMR spectroscopy, as well as elemental analysis. The structures of 5d and 6c were also determined by single‐crystal X‐ray diffraction analysis. A preliminary in vitro bioassay indicated that compounds 4e and 5d exhibited excellent‐to‐medium fungicidal activity against Sclerotinia sclerotiorum at the dosage of 10 μg/ml.  相似文献   

6.
Hydrido complexes [MnH(CO)3L1–3] [L1 = 1,2‐bis‐(diphenylphosphanoxy)‐ethane ( 1 ); L2 = 1,2‐bis‐(diisopropylphosphanoxy)ethane ( 2 ); L3 = 1,3‐bis‐(diphenylphosphanoxy)‐propane ( 3 )] were prepared by treating [MnH(CO)5] with the appropriate bidentate ligand by heating to reflux. Photoirradiation of a toluene solution of complexes 1 and 2 in the presence of PPhn(OR)3–n (n = 0, 1; R = Me, Et) leads to the replacement of a CO ligand by the corresponding monodentate phosphite or phosphonite ligand to give new hydrido compounds of formula [MnH(CO)2(L1–2)(L)] [L = P(OMe)3 ( 1a – 2a ); P(OEt)3 ( 1b – 2b ); PPh(OMe)2 ( 1c – 2c ); PPh(OEt)2 ( 1d – 2d )]. All complexes were characterized by IR, 1H, 13C and 31P NMR spectroscopy. In case of compounds 2 and 3 , suitable crystals for X‐ray diffraction studies were isolated.  相似文献   

7.
Reactions of 5H,2λ5-Azaphospholes with Arylazocarbonitriles and Dialkyl Acetylenedicarboxylates Azaphospholes 1a – c react with activated arylazocarbonitriles to 1,5,2λ5-diazaphosphorines 2a – c and 3a – c . The reaction of 1a – c with diethyl or dimethyl acetylenedicarboxyiates yields 7H-1,4λ5-azaphosphepines 4a – c . The structures of 2b , 3a , and 4a are established by an X-ray diffraction analysis.  相似文献   

8.
A new family of 120° carbazole‐based dendritic donors D1 – D3 have been successfully designed and synthesized, from which a series of novel supramolecular carbazole‐based metallodendrimers with well‐defined shapes and sizes were successfully prepared by [2+2] and [3+3] coordination‐driven self‐assembly. The structures of newly designed rhomboidal and hexagonal metallodendrimers were characterized by multinuclear NMR (1H and 31P) spectroscopy, ESI‐TOF mass spectrometry, FTIR spectroscopy, and the PM6 semiempirical molecular orbital method. The fluorescence emission behavior of ligands D1 – D3 , rhomboidal metallodendrimers R1 – R3 , and hexagonal metallodendrimers H1 – H3 in mixtures of dichloromethane and n‐hexane with different n‐hexane fractions were investigated. The results indicated that D1 – D3 featured typical aggregation‐induced emission (AIE) properties. However, different from ligands D1 – D3 , metallodendrimers R1 – R3 and H1 – H3 presented interesting generation‐dependent AIE properties. Furthermore, evidence for the aggregation of these metallodendrimers was confirmed by a detailed investigation of dynamic light‐scattering, Tyndall effect, and SEM. This research not only provides a highly efficient strategy for constructing carbazole‐based dendrimers with well‐defined shapes and sizes, but also presents a new family of carbazole‐based dendritic ligands and rhomboidal and hexagonal metallodendrimers with interesting AIE properties.  相似文献   

9.
Solvothermal combination of trivalent lanthanide metal precursors with 1, 2, 4, 5‐cyclohexanetetracarboxylic acid (L) ligand has afforded the preparation of a family of eight new coordination polymers [Ln4(L)3(H2O)10] · 7H2O (Ln = Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) ( 1 – 8 ). Structural analyses reveal that the 1, 2, 4, 5‐cyclohexanetetracarboxylic acid ligand with e,a,a,e (LI) conformation displays a μ4‐(κ3O, O, O5)(κ2O2,O2)(κ2O4,O4)‐bridging mode to generate 3D frameworks of complexes 1 – 8 and the α‐Po topology with the short Schläfli symbol {412.63} could be observed in complexes 1 – 8 . The near‐infrared luminescence properties were studied, and the results have shown that the HoIII, ErIII, and YbIII complexes emit typical near‐infrared luminescence in the solid‐state. Variable‐temperature magnetic susceptibility measurements of complexes 2 – 7 have shown that complex 2 (Gd) shows the ferromagnetic coupling between magnetic centers, whereas the complexes 3 – 7 show the antiferromagnetic coupling between magnetic centers. Additionally, the thermogravimetric analyses were discussed.  相似文献   

10.
In this study, we report the synthesis a series of novel 2‐[N‐(1H‐tetrazol‐5‐yl)‐6,14‐endo‐etheno‐6,7,8,14‐tetrahydrothebaine‐7α‐yl]‐5‐phenyl‐1,3,4‐oxadiazole derivatives ( 7a – e ) which have potential opioid antagonist and agonist. The substitution reaction of 6,14‐endo‐ethenotetrahydrothebaine‐7α‐carbohydrazide with corresponding benzoyl chlorides gave diacylhydrazine compounds 4a – e in good yields. The treatment of compounds 4a – e with POCl3 caused the conversion of side‐chain of compounds 5a – e into 1,3,4‐oxadiazole ring at C(7) position; thus, compounds 5a – e were obtained. Subsequently, cyanamides ( 6a – e ) were prepared from compounds 5a – e and then compounds 7a – e were synthesized by the azidation of 6a – e with NaN3. The structures of the compounds were established on the basis of their IR, 1H NMR, 13C APT, 2D‐NMR (COSY, NOESY, HMQC, HMBC) and high‐resolution mass spectral data.  相似文献   

11.
The thermal behavior and thermal decomposition kinetic parameters of podophyllotoxin (1) and 4 derivatives, picropodophyllin (2), deoxypodophyllotoxin (3), fl-apopicropodophyllin (4), podophyllotoxone (5) in a temperature-programmed mode have been investigated by means of DSC and TG-DTG. The kinetic model functions in differential and integral forms of the thermal decomposition reactions mentioned above for first stage were established. The kinetic parameters of the apparent activation energy Ea and per-exponential factor A were obtained from analy- sis of the TG-DTG curves by integral and differential methods. The most probable kinetic model function of the decomposition reaction in differential form was (1- a)^2 for compounds 1-3,2/3·a^-1/2 for compound 4 and 1/2(1-a)·[-In(1-a)]^-1 for compound 5. The values of Ea indicated that the reactivity of compounds 1-5was increased in the order: 5〈4〈2〈1〈3. The values of the entropy of activation △S^≠, enthalpy of activation △H^≠ and free energy of activation △G^≠ of the reactions were estimated. The values of △G^≠ indicated that the thermal stability of compounds 1-3 with the samef(a) was increased in the order: 2〈3〈1.  相似文献   

12.
A new series of (E)‐1‐(4‐((1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)methoxy)phenyl)‐3‐phenylprop‐2‐en‐1‐one 1a (4‐((1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl) methoxy)phenyl)‐1‐phenylprop‐2‐en‐1‐one 1b – 15b were designed, synthesized based on click chemistry, and biologically evaluated for their activity on tyrosinase. The result showed that most of prepared compounds 1a – 15a have potent activating effect on tyrosinase, especially for 3a , 8a – 10a and 14a – 15a . Among them, compounds 10a and 14a demonstrated the best activity with EC50=1.71 and 5.60 µmol·L?1 respectively, even better than the positive control 8‐MOP (EC50=14.8 µmol·L?1). Conversely, compounds 3b , 5b – 6b , 9b – 10b , and 15b induced enzymatic inhibition on tyrosinase.  相似文献   

13.
A series of 3‐substituted 2‐thioxo‐2,3‐dihydro‐1H‐benzo[g]quinazolin‐4‐ones 4a – e were synthesized from the reaction of 3‐aminonaphthalene‐2‐carboxylic acid 1 with isothiocyanate derivatives 2a – e . The alkylation of 4a – e with alkyl halides gave 3‐substituted 2‐alkylsulfanyl‐2,3‐dihydro‐1H‐benzo[g]quinazolin‐4‐ones 5a – o . S‐Glycosylation was carried out via the reaction of 4a – e with glycopyranosyl bromides 7a and 7b under anhydrous alkaline conditions. The structure of the compounds was established as S‐nucleoside and not N‐nucleoside. Conformational analysis has been studied by homonuclear and heteronuclear two‐dimensional NMR methods (2D DFQ‐COSY, heteronuclear multiple quantum coherence, and heteronuclear multiple bond correlation). The S site of alkylation and glycosylation was determined from the 1H and 13C heteronuclear multiple quantum coherence experiments.  相似文献   

14.
An efficient one‐pot reaction has been developed for the synthesis of 2,3‐dichloroquinoxaline derivatives 3a – n . The reaction was performed in two steps via a silica gel catalyzed tandem process from o‐phenylenediamine and oxalic acid, followed by addition of phosphorus oxychloride (POCl3). A variety of 2,3‐dichloroquinoxalines have been obtained in good to excellent overall yields. Eight known compounds 3a – 3h were characterized by IR, 1H‐NMR, and mass spectroscopies. Compounds 3i – 3n without spectroscopic data were characterized by IR, 1H‐NMR, 13C‐NMR, and mass spectroscopies.  相似文献   

15.
Five dinuclear lanthanide complexes [Ln2L2(NO3)2(OAc)4] · 2CH3CN [Ln = Gd ( 1 ), Tb ( 2 ), Dy ( 3 ), Ho ( 4 ), and Er ( 5 )] [L = 2‐((2‐pyridinylmethylene)hydrazine)ethanol] were synthesized from the reactions of Ln(NO3)3 · 6H2O with L and CH3COOH in the presence of triethylamine. Their crystal structures were determined. They show similar dinuclear cores with the two lanthanide ions bridged by four acetate ligands in the μ2‐η12 and μ2‐η11 bridging modes. Each LnIII ion in complexes 1 – 5 is further chelated by one L ligand and one nitrate ion, leading to the formation of a nine‐coordinated mono‐capped square antiprism arrangement. The dinuclear molecules in 1 – 5 are consolidated by hydrogen bonds and π ··· π stacking interactions to build a two‐dimensional sheet. Their magnetic properties were investigated. It revealed antiferromagnetic interactions between the GdIII ions in 1 and ferromagnetic interactions between the TbIII ions in 2 . The profiles of χmT vs. T curves of 3 – 5 reveal that the magnetic properties of 3 – 5 are probably dominated by the thermal depopulation of the Stark sublevels of LnIII ions.  相似文献   

16.
Structure elucidation of compounds in the benzisoxazole series ( 1 – 6 ) and naphtho[1,2‐d][1,3]‐ ( 7 – 10 ) and phenanthro[9,10‐d][1,3]oxazole ( 11 – 14 ) series was accomplished using extensive 2D NMR spectroscopic studies including 1H–1H COSY, long‐ range 1H–1H COSY, 1H–13C COSY, gHMQC, gHMBC and gHMQC‐TOCSY experiments. The distinction between oxazole and isoxazole rings was made on the basis of the magnitude of heteronuclear one‐bond 1JC2, H2 (or 1JC3, H3) coupling constants. Complete analysis of the 1H NMR spectra of 11 – 14 was achieved by iterative calculations. Gradient selected gHMQC‐TOCSY spectra of phenanthro[9,10‐d][1,3]oxazoles 11 – 14 were obtained at different mixing times (12, 24, 36, 48 and 80 ms) to identify the spin system where the protons of phenanthrene ring at H‐5, H‐6 and at H‐9 and H‐7 and H‐8 were highly overlapping. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
A novel series of pyrido[2,3‐d]pyrimidines 3a – d , 4a – d , 5a – d , 6a – d , and 7a – d ; pyrido[3,2‐e][1,3,4]triazolo; and tetrazolo[1,5‐c]pyrimidines 10a – d and 11a – d was synthesized through different chemical reactions starting from 2‐amino‐3‐cyano‐4,6‐diarylpyridines. The newly synthesized heterocycles were characterized by elemental analysis, IR, 1H‐NMR, 13C‐NMR, and mass spectral data. Compounds have been screened for their antibacterial and antifungal activities. The data showed that the presence of electron‐donating group such as p‐methoxyphenyl increases the antimicrobial activity. Also, the compounds have shown anticancer activity for colon and liver cancer cells.  相似文献   

18.
We synthesized nitrosamines (R2N? NO) with R=iPr ( 1 ), nPr ( 2 ), nBu ( 3 ), and hydroxyethyl ( 4 ) from the amine using sodium nitrite/p‐toluenesulfonic acid in CH2Cl2. The rate of formation of 1 – 4 increases in the direction iPr<nPr<nBu2CH2OH. Compounds 1 – 3 were obtained as colorless solids, whereas 4 is a bright yellow liquid. Compounds 1 – 4 were characterized by elemental analysis, MS, IR, and multinuclear NMR (1H, 13C, and 15N) spectroscopies. Additionally, we measured the UV/Vis spectra of all compounds, which show maxima of absorption at approximately 221 nm and molar extinction coefficients between 3043 and 4859 L mol?1 cm?1. We calculated the optimized structures of 1 – 4 (B3LYP/6‐311+G(d,p)) and computed the NMR spectroscopic chemical shifts and infrared frequencies. Furthermore, we carried out a natural bond orbital (NBO) analysis of the nitrosamine moiety. Lastly, the compounds described in this work are valuable starting materials for the synthesis of 2‐tetrazenes with potential interest to replace highly toxic hydrazines in rocket propulsion.  相似文献   

19.
Coupling of 4,6-dichloro-1H-imidazo[4,5-c]pyridine (2,6-dichloro-3-deaza-9H-purine) ( 1 ) with 1,2-O-di-acetyl-5-O-benzoyl-3-deoxy-β-D -ribofuranose ( 2 ), employing the acid-catalyzed fusion method, is reported (Scheme 1). The condensation reaction was regioselective and gave the three N1-glycosylation products 3 – 5 , whereas no N3-nucleosides were detected. Treatment of 3 – 5 with methanolic ammonia afforded the corresponding deprotected nucleosides 6 – 8 . Compounds 6 and 7 were assigned the structure of the β-D - and α-D -anomeric N1-(3′-deoxyribo)nucleosides, respectively. The third derivative 8 proved to be the α-D -anomer of a 3′-deoxyarabinonucleoside deriving from epimerization at C(2) of the sugar. The 2-chloro- and N6-substituted derivatives 9 , 11 , and 13 of 3′-deoxy-3-deazaadenosine ( 10 ) and of its α-D -anomer 12 can be obtained from these versatile synthons (Schemes 2 and 3).  相似文献   

20.
The electron-impact (EI) mass spectral fragmentation of ten bis-O- (1-methylethylidene)fructopyranose derivatives and three related sugar sulfamates were investigated. In particular, 2,3:4,5-bis-O - (1-methylethylidene)-β-D-fructopyranose sulfamate (topiramate), a potent anticonvulsant, was examined in greater detail. The fragmentation of the 2,3:4,5-bis-O-(1-methylethylidene) fructopyranose derivatives in general was not very dependent on the nature of substitution; the mechanisms of the common and unique fragmentation patterns are presented. These compounds showed characteristic peaks at m/z [M – 15]+, [M – 15 – 58]+, [M – 15 – 58 – 60]+, [M ? CH2X]+ and [M ? CH2X – 58]+ where X = OSO2NR2 (R ? H, CH3, and/or Ph), OC (O)NHR, NH2, CI and OH. The fragmentation of isomeric bis-O-(1-methylethylidene) derivatives of aldopyranose, ketopyranose and ketofuranose sulfamates was also investigated. The results indicate that isomeric sugar sulfamates can be easily distinguished in the EI mode. Key fragmentation pathways are discussed for these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号