首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unsteady compressible Reynolds‐averaged Navier–Stokes equations are discretized using the Osher approximate Riemann solver with fully implicit time stepping. The resulting non‐linear system at each time step is solved iteratively using a Newton/GMRES method. In the solution process, the Jacobian matrix–vector products are replaced by directional derivatives so that the evaluation and storage of the Jacobian matrix is removed from the procedure. An effective matrix‐free preconditioner is proposed to fully avoid matrix storage. Convergence rates, computational costs and computer memory requirements of the present method are compared with those of a matrix Newton/GMRES method, a four stage Runge–Kutta explicit method, and an approximate factorization sub‐iteration method. Effects of convergence tolerances for the GMRES linear solver on the convergence and the efficiency of the Newton iteration for the non‐linear system at each time step are analysed for both matrix‐free and matrix methods. Differences in the performance of the matrix‐free method for laminar and turbulent flows are highlighted and analysed. Unsteady turbulent Navier–Stokes solutions of pitching and combined translation–pitching aerofoil oscillations are presented for unsteady shock‐induced separation problems associated with the rotor blade flows of forward flying helicopters. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
A previously developed numerical model that solves the incompressible, non‐hydrostatic, Navier–Stokes equations for free surface flow is analysed on a non‐uniform vertical grid. The equations are vertically transformed to the σ‐coordinate system and solved in a fractional step manner in which the pressure is computed implicitly by correcting the hydrostatic flow field to be divergence free. Numerical consistency, accuracy and efficiency are assessed with analytical methods and numerical experiments for a varying vertical grid discretization. Specific discretizations are proposed that attain greater accuracy and minimize computational effort when compared to a uniform vertical discretization. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

3.
A three‐dimensional numerical model is developed for incompressible free surface flows. The model is based on the unsteady Reynolds‐averaged Navier–Stokes equations with a non‐hydrostatic pressure distribution being incorporated in the model. The governing equations are solved in the conventional sigma co‐ordinate system, with a semi‐implicit time discretization. A fractional step method is used to enable the pressure to be decomposed into its hydrostatic and hydrodynamic components. At every time step one five‐diagonal system of equations is solved to compute the water elevations and then the hydrodynamic pressure is determined from a pressure Poisson equation. The model is applied to three examples to simulate unsteady free surface flows where non‐hydrostatic pressures have a considerable effect on the velocity field. Emphasis is focused on applying the model to wave problems. Two of the examples are about modelling small amplitude waves where the hydrostatic approximation and long wave theory are not valid. The other example is the wind‐induced circulation in a closed basin. The numerical solutions are compared with the available analytical solutions for small amplitude wave theory and very good agreement is obtained. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
The development of a numerical scheme for non‐hydrostatic free surface flows is described with the objective of improving the resolution characteristics of existing solution methods. The model uses a high‐order compact finite difference method for spatial discretization on a collocated grid and the standard, explicit, single step, four‐stage, fourth‐order Runge–Kutta method for temporal discretization. The Cartesian coordinate system was used. The model requires the solution of two Poisson equations at each time‐step and tridiagonal matrices for each derivative at each of the four stages in a time‐step. Third‐ and fourth‐order accurate boundaries for the flow variables have been developed including the top non‐hydrostatic pressure boundary. The results demonstrate that numerical dissipation which has been a problem with many similar models that are second‐order accurate is practically eliminated. A high accuracy is obtained for the flow variables including the non‐hydrostatic pressure. The accuracy of the model has been tested in numerical experiments. In all cases where analytical solutions are available, both phase errors and amplitude errors are very small. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
6.
An implicit finite volume model in sigma coordinate system is developed to simulate two‐dimensional (2D) vertical free surface flows, deploying a non‐hydrostatic pressure distribution. The algorithm is based on a projection method which solves the complete 2D Navier–Stokes equations in two steps. First the pressure term in the momentum equations is excluded and the resultant advection–diffusion equations are solved. In the second step the continuity and the momentum equation with only the pressure terms are solved to give a block tri‐diagonal system of equation with pressure as the unknown. This system can be solved by a direct matrix solver without iteration. A new implicit treatment of non‐hydrostatic pressure, similar to the lower layers is applied to the top layer which makes the model free of any hydrostatic pressure assumption all through the water column. This treatment enables the model to evaluate both free surface elevation and wave celerity more accurately. A series of numerical tests including free‐surface flows with significant vertical accelerations and nonlinear behaviour in shoaling zone are performed. Comparison between numerical results, analytical solutions and experimental data demonstrates a satisfactory performance. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
The hydrostatic pressure assumption has been widely used in studying water movements in rivers, lakes, estuaries, and oceans. While this assumption is valid in many cases and has been successfully used in numerous studies, there are many cases where this assumption is questionable. This paper presents a three‐dimensional, hydrodynamic model for free‐surface flows without using the hydrostatic pressure assumption. The model includes two predictor–corrector steps. In the first predictor–corrector step, the model uses hydrostatic pressure at the previous time step as an initial estimate of the total pressure field at the new time step. Based on the estimated pressure field, an intermediate velocity field is calculated, which is then corrected by adding the non‐hydrostatic component of the pressure to the estimated pressure field. A Poisson equation for non‐hydrostatic pressure is solved before the second intermediate velocity field is calculated. The final velocity field is found after the free surface at the new time step is computed by solving a free‐surface correction equation. The numerical method was validated with several analytical solutions and laboratory experiments. Model results agree reasonably well with analytical solutions and laboratory results. Model simulations suggest that the numerical method presented is suitable for fully hydrodynamic simulations of three‐dimensional, free‐surface flows. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
This paper investigates the performance of preconditioned Krylov subspace methods used in a previously presented two‐fluid model developed for the simulation of separated and intermittent gas–liquid flows. The two‐fluid model has momentum and mass balances for each phase. The equations comprising this model are solved numerically by applying a two‐step semi‐implicit time integration procedure. A finite difference numerical scheme with a staggered mesh is used. Previously, the resulting linear algebraic equations were solved by a Gaussian band solver. In this study, these algebraic equations are also solved using the generalized minimum residual (GMRES) and the biconjugate gradient stabilized (Bi‐CGSTAB) Krylov subspace iterative methods preconditioned with incomplete LU factorization using the ILUT(p, τ) algorithm. The decrease in the computational time using the iterative solvers instead of the Gaussian band solver is shown to be considerable. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
An efficient curvilinear non‐hydrostatic free surface model is developed to simulate surface water waves in horizontally curved boundaries. The generalized curvilinear governing equations are solved by a fractional step method on a rectangular transformed domain. Of importance is to employ a higher order (either quadratic or cubic spline function) integral method for the top‐layer non‐hydrostatic pressure under a staggered grid framework. Model accuracy and efficiency, in terms of required vertical layers, are critically examined on a linear progressive wave case. The model is then applied to simulate waves propagating in a canal with variable widths, cnoidal wave runup around a circular cylinder, and three‐dimensional wave transformation in a circular channel. Overall the results show that the curvilinear non‐hydrostatic model using a few, e.g. 2–4, vertical layers is capable of simulating wave dispersion, diffraction, and reflection due to curved sidewalls. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
This paper describes the finite difference numerical procedure for solving velocity–vorticity form of the Navier–Stokes equations in three dimensions. The velocity Poisson equations are made parabolic using the false‐transient technique and are solved along with the vorticity transport equations. The parabolic velocity Poisson equations are advanced in time using the alternating direction implicit (ADI) procedure and are solved along with the continuity equation for velocities, thus ensuring a divergence‐free velocity field. The vorticity transport equations in conservative form are solved using the second‐order accurate Adams–Bashforth central difference scheme in order to assure divergence‐free vorticity field in three dimensions. The velocity and vorticity Cartesian components are discretized using a central difference scheme on a staggered grid for accuracy reasons. The application of the ADI procedure for the parabolic velocity Poisson equations along with the continuity equation results in diagonally dominant tri‐diagonal matrix equations. Thus the explicit method for the vorticity equations and the tri‐diagonal matrix algorithm for the Poisson equations combine to give a simplified numerical scheme for solving three‐dimensional problems, which otherwise requires enormous computational effort. For three‐dimensional‐driven cavity flow predictions, the present method is found to be efficient and accurate for the Reynolds number range 100?Re?2000. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
A semi‐implicit method for coupled surface–subsurface flows in regional scale is proposed and analyzed. The flow domain is assumed to have a small vertical scale as compared with the horizontal extents. Thus, after hydrostatic approximation, the simplified governing equations are derived from the Reynolds averaged Navier–Stokes equations for the surface flow and from the Darcy's law for the subsurface flow. A conservative free‐surface equation is derived from a vertical integral of the incompressibility condition and extends to the whole water column including both, the surface and the subsurface, wet domains. Numerically, the horizontal domain is covered by an unstructured orthogonal grid that may include subgrid specifications. Along the vertical direction a simple z‐layer discretization is adopted. Semi‐implicit finite difference equations for velocities and a finite volume approximation for the free‐surface equation are derived in such a fashion that, after simple manipulation, the resulting discrete free‐surface equation yields a single, well‐posed, mildly nonlinear system. This system is efficiently solved by a nested Newton‐type iterative method that yields simultaneously the pressure and a non‐negative fluid volume throughout the computational grid. The time‐step size is not restricted by stability conditions dictated by friction or surface wave speed. The resulting algorithm is simple, extremely efficient, and very accurate. Exact mass conservation is assured also in presence of wetting and drying dynamics, in pressurized flow conditions, and during free‐surface transition through the interface. A few examples illustrate the model applicability and demonstrate the effectiveness of the proposed algorithm. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
An implicit finite difference model in the σ co‐ordinate system is developed for non‐hydrostatic, two‐dimensional vertical plane free‐surface flows. To accurately simulate interaction of free‐surface flows with uneven bottoms, the unsteady Navier–Stokes equations and the free‐surface boundary condition are solved simultaneously in a regular transformed σ domain using a fully implicit method in two steps. First, the vertical velocity and pressure are expressed as functions of horizontal velocity. Second, substituting these relationship into the horizontal momentum equation provides a block tri‐diagonal matrix system with the unknown of horizontal velocity, which can be solved by a direct matrix solver without iteration. A new treatment of non‐hydrostatic pressure condition at the top‐layer cell is developed and found to be important for resolving the phase of wave propagation. Additional terms introduced by the σ co‐ordinate transformation are discretized appropriately in order to obtain accurate and stable numerical results. The developed model has been validated by several tests involving free‐surface flows with strong vertical accelerations and non‐linear waves interacting with uneven bottoms. Comparisons among numerical results, analytical solutions and experimental data show the capability of the model to simulate free‐surface flow problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Implicit solution of time spectral method for periodic unsteady flows   总被引:2,自引:0,他引:2  
The present paper investigates the implicit solution of time spectral model for periodic unsteady flows. In the time spectral model, the physical time derivative is approximated using spectral method. The robustness issues associated with implicit solution of time spectral model are analyzed and validated by numerical results. It is found that spectral approximation of the time derivative weakens the diagonal dominance property of the Jacobian matrix, resulting in the deterioration of stability and convergence speed. In this paper we propose to solve the coupled governing equations implicitly using multigrid preconditioned generalized minimal residual (GMRES) method, which demonstrates favorable convergence speed. Also it is demonstrated that the current method is insensitive to the variations of frequency and number of harmonics. Comparison of computation results with dual time step unsteady computation validates the high efficiency of the current method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A depth‐averaged two‐dimensional model has been developed in the curvilinear co‐ordinate system for free‐surface flow problems. The non‐linear convective terms of the momentum equations are discretized based on the explicit–finite–analytic method with second‐order accuracy in space and first‐order accuracy in time. The other terms of the momentum equations, as well as the mass conservation equation, are discretized by the finite difference method. The discretized governing equations are solved in turn, and iteration in each time step is adopted to guarantee the numerical convergence. The new model has been applied to various flow situations, even for the cases with the presence of sub‐critical and supercritical flows simultaneously or sequentially. Comparisons between the numerical results and the experimental data show that the proposed model is robust with satisfactory accuracy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
A finite volume, time‐marching for solving time‐dependent viscoelastic flow in two space dimensions for Oldroyd‐B and Phan Thien–Tanner fluids, is presented. A non‐uniform staggered grid system is used. The conservation and constitutive equations are solved using the finite volume method with an upwind scheme for the viscoelastic stresses and an hybrid scheme for the velocities. To calculate the pressure field, the semi‐implicit method for the pressure linked equation revised method is used. The discretized equations are solved sequentially, using the tridiagonal matrix algorithm solver with under‐relaxation. In both, the full approximation storage multigrid algorithm is used to speed up the convergence rate. Simulations of viscoelastic flows in four‐to‐one abrupt plane contraction are carried out. We will study the behaviour at the entrance corner of the four‐to‐one planar abrupt contraction. Using this solver, we show convergence up to a Weissenberg number We of 20 for the Oldroyd‐B model. No limiting Weissenberg number is observed even though a Phan Thien–Tanner model is used. Several numerical results are presented. Smooth and stable solutions are obtained for high Weissenberg number. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
A three‐dimensional numerical model is presented for the simulation of unsteady non‐hydrostatic shallow water flows on unstructured grids using the finite volume method. The free surface variations are modeled by a characteristics‐based scheme, which simulates sub‐critical and super‐critical flows. Three‐dimensional velocity components are considered in a collocated arrangement with a σ‐coordinate system. A special treatment of the pressure term is developed to avoid the water surface oscillations. Convective and diffusive terms are approximated explicitly, and an implicit discretization is used for the pressure term to ensure exact mass conservation. The unstructured grid in the horizontal direction and the σ coordinate in the vertical direction facilitate the use of the model in complicated geometries. Solution of the non‐hydrostatic equations enables the model to simulate short‐period waves and vertically circulating flows. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
This paper describes a domain decomposition method for the incompressible Navier–Stokes equations in general co‐ordinates. Domain decomposition techniques are needed for solving flow problems in complicated geometries while retaining structured grids on each of the subdomains. This is the so‐called block‐structured approach. It enables the use of fast vectorized iterative methods on the subdomains. The Navier–Stokes equations are discretized on a staggered grid using finite volumes. The pressure‐correction technique is used to solve the momentum equations together with incompressibility conditions. Schwarz domain decomposition is used to solve the momentum and pressure equations on the composite domain. Convergence of domain decomposition is accelerated by a GMRES Krylov subspace method. Computations are presented for a variety of flows. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
A fractional step method for the solution of the steady state incompressible Navier–Stokes equations is proposed in this paper in conjunction with a meshless method, named discrete least‐squares meshless (DLSM). The proposed fractional step method is a first‐order accurate scheme, named semi‐incremental fractional step method, which is a general form of the previous first‐order fractional step methods, i.e. non‐incremental and incremental schemes. One of the most important advantages of the proposed scheme is its capability to use large time step sizes for the solution of incompressible Navier–Stokes equations. DLSM method uses moving least‐squares shape functions for function approximation and discrete least‐squares technique for discretization of the governing differential equations and their boundary conditions. As there is no need for a background mesh, the DLSM method can be called a truly meshless method and enjoys symmetric and positive‐definite properties. Several numerical examples are used to demonstrate the ability and the efficiency of the proposed scheme and the discrete least‐squares meshless method. The results are shown to compare favorably with those of the previously published works. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a two‐dimensional finite element model for simulating dynamic propagation of weakly dispersive waves. Shallow water equations including extra non‐hydrostatic pressure terms and a depth‐integrated vertical momentum equation are solved with linear distributions assumed in the vertical direction for the non‐hydrostatic pressure and the vertical velocity. The model is developed based on the platform of a finite element model, CCHE2D. A physically bounded upwind scheme for the advection term discretization is developed, and the quasi second‐order differential operators of this scheme result in no oscillation and little numerical diffusion. The depth‐integrated non‐hydrostatic wave model is solved semi‐implicitly: the provisional flow velocity is first implicitly solved using the shallow water equations; the non‐hydrostatic pressure, which is implicitly obtained by ensuring a divergence‐free velocity field, is used to correct the provisional velocity, and finally the depth‐integrated continuity equation is explicitly solved to satisfy global mass conservation. The developed wave model is verified by an analytical solution and validated by laboratory experiments, and the computed results show that the wave model can properly handle linear and nonlinear dispersive waves, wave shoaling, diffraction, refraction and focusing. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A finite element model to solve the incompressible Navier–Stokes equations based on the stabilization with orthogonal subscales, a predictor–corrector scheme to segregate the pressure and a nodal based implementation is presented in this paper. The stabilization consists of adding a least‐squares form of the component orthogonal to the finite element space of the convective and pressure gradient terms, which allows to deal with convection‐dominated flows and to use equal velocity–pressure interpolation. The pressure segregation is inspired in fractional step schemes, although the converged solution corresponds to that of a monolithic time integration. Finally, the nodal‐based implementation is based on an a priori calculation of the integrals appearing in the formulation and then the construction of the matrix and right‐hand side vector of the final algebraic system to be solved. After appropriate approximations, this matrix and this vector can be constructed directly for each nodal point, without the need to loop over the elements and thus making the calculations much faster. Some issues related to this implementation for fractional step and our predictor–corrector scheme, which is the main contribution of this paper, are discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号