首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper electropolymerization of a thin film of para‐phenylenediamine (PPD) is studied at glassy carbon electrode (GCE) in sulfuric acid media by cyclic voltammetry. The results showed that this polymer was conducting and had a reproducible redox couple in the potential region from 0.0 to 0.4 V in phosphate buffer solution. This modified GCE (p‐PPD‐GCE) was applied for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) using differential pulse voltammetry (DPV). The p‐PPD‐GCE in 0.1 M phosphate buffer solution (pH 5.0) separated the DPV signals of AA, DA and UA with sufficient potential differences between AA–DA and DA–UA and also enhanced their oxidation peak currents. The oxidation currents were increased from 2.0 to 2000.0 µM for AA, 10.0 to 1250.0 µM for DA and 50.0 to 1600.0 µM for UA. The detection limits were evaluated as 0.4, 1.0 and 2.5 µM for AA, DA and UA, respectively (S/N=3).  相似文献   

2.
Electrochemically polymerized luminol film on a glassy carbon electrode (GCE) surface has been used as a sensor for selective detection of uric acid (UA) in the presence of ascorbic acid (AA) and dopamine (DA). Cyclic voltammetry was used to evaluate the electrochemical properties of the poly(luminol) film modified electrode. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used for surface characterizations. The bare GCE failed to distinguish the oxidation peaks of AA, DA and UA in phosphate buffer solution (pH 7.0), while the poly(luminol) modified electrode could separate them efficiently. In differential pulse voltammetric (DPV) measurements, the modified GCE could separate AA and DA signals from UA, allowing the selective determination of UA. Using DPV, the linear range (3.0×10?5 to 1.0×10?3 M) and the detection limit (2.0×10?6 M) were estimated for measurement of UA in physiological condition. The applicability of the prepared electrode was demonstrated by measuring UA in human urine samples.  相似文献   

3.
朱小红  林祥钦 《中国化学》2009,27(6):1103-1109
用循环伏安法(CV)选择不同电位区间来电聚合烟酰胺(NA)得到了两种聚合物膜修饰电极:poly-niacinamide/GCE (poly-NA/GCE)和poly- nicotinic acid /GCE (poly-NC/GCE)。这两电极都具有显著电化学催化作用,能明显地降低多巴胺(DA)、尿酸(UA)和抗坏血酸(AA)的氧化过电位,并在混合溶液中使这些物质的氧化峰电位距离足够大,可进行三物质的同时测定。poly-NC/GCE的电催化性能更好一些,用差分脉冲伏安法(DPV)测定抗坏血酸,线性范围为75–3000 µmol L-1,电流灵敏度为5.6 mA•L•mol-1;测定多巴胺,线性范围为0.37 – 16 µmol L-1,电流灵敏度为1140 mA•L•mol-1; 测定尿酸,线性范围为0.74 – 230 µmol L-1,电流灵敏度为102 mA•L•mol-1。该电极具有很高的灵敏度、选择性和抗污染能力。  相似文献   

4.
《Electroanalysis》2004,16(23):1977-1983
2,2‐bis(3‐Amino‐4‐hydroxyphenyl)hexafluoropropane (BAHHFP) was electro‐polymerized oxidatively on glassy carbon by cyclic voltammetry. The activity of the modified electrode towards ascorbic acid (AA), uric acid (UA) and dopamine (DA) was characterized with cyclic voltammetry and differential puls voltammetry (DPV). The findings showed that the electrode modification drastically suppresses the response of AA and shifts it towards more negative potentials. Simultaneously an enhancement of reaction reversibility is seen for DA and UA. Unusual, selective preconcentration features are observed for DA when the polymer‐modified electrode is polarized at negative potential. In a ternary mixture containing the three analytes studied, three baseline resolved peaks are observed in DPV mode. At physiological pH 7.4, after 5 min preconcentration at ?300 mV, peaks positions were ?0.073, 0.131 and 0.280 V (vs. Ag/AgCl) for AA, DA and UA, respectively. Relative selectivities DA/AA and UA/AA were over 4000 : 1 and 700 : 1, respectively. DA response was linear in the range 0.05–3 μM with sensitivity of 138 μA μM?1 cm?2 and detection limit (3σ) of 5 nM. Sensitive quantification of UA was possible in acidic solution (pH 1.8). Under such conditions a very sharp peak appeared at 630 mV (DPV). The response was linear in the range 0.5–100 μM with sensitivity of 4.67 μA μM?1 cm?2 and detection limit (3σ) of 0.1 μM. Practical utility was illustrated by selective determination of UA in human urine.  相似文献   

5.
《Electroanalysis》2003,15(21):1693-1698
The voltammetric behaviors of uric acid (UA) and L ‐ascorbic acid (L ‐AA) were studied at well‐aligned carbon nanotube electrode. Compared to glassy carbon, carbon nanotube electrode catalyzes oxidation of UA and L ‐AA, reducing the overpotentials by about 0.028 V and 0.416 V, respectively. Based on its differential catalytic function toward the oxidation of UA and L ‐AA, the carbon nanotube electrode resolved the overlapping voltammetric response of UA and L ‐AA into two well‐defined voltammetric peaks in applying both cyclic voltammetry (CV) and differential pulse voltammetry (DPV), which can be used for a selective determination of UA in the presence of L ‐AA. The peak current obtained from DPV was linearly dependent on the UA concentration in the range of 0.2 μM to 80 μM with a correlation coefficient of 0.997. The detection limit (3δ) for UA was found to be 0.1 μM. Finally, the carbon nanotube electrode was successfully demonstrated as a electrochemical sensor to the determination of UA in human urine samples by simple dilution without further pretreatment.  相似文献   

6.
采用电化学方法将钙羧酸(CCA)聚合修饰在玻碳电极(GCE)表面制备了聚钙羧酸指示剂修饰玻碳电极(PCCA/GCE),并用循环伏安法和交流阻抗法研究了电极的电化学性能。结果表明:在pH 6.0的磷酸盐缓冲溶液中,多巴胺(DA)和尿酸(UA)在聚钙羧酸修饰电极上的氧化峰得以分开,峰电位差为0.14V,据此提出了聚钙羧酸修饰电极差分脉冲伏安法同时测定多巴胺和尿酸的方法。DA和UA的浓度分别在5.0~43.8μmol.L-1和5.0~50.0μmol.L-1范围内与其氧化峰电流呈线性关系,检出限(3S/N)分别为0.2μmol.L-1和0.5μmol.L-1。方法可用于多巴胺注射液样品中DA和UA的测定,测定值的相对标准偏差(n=5)依次为2.43%和2.35%。  相似文献   

7.
The properties of graphite electrode (Gr) modified with poly(diallyl dimethyl ammonium chloride) (PDDA) for the detection of uric acid (UA) in the presence of dopamine (DA) and high concentration of ascorbic acid (AA) have been investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The polymer modified graphite electrode was prepared by a very simple method just by immersing the graphite electrode in PDDA solution for 20 minutes. The PDDA/Gr modified electrode displayed excellent electrocatalytic activity towards the oxidation of UA, DA and AA compared to that at the bare graphite electrode. The electrochemical oxidation signals of UA, DA and AA are well resolved into three distinct peaks with peak potential separations of 220 mV, 168 mV and 387 mV between AA‐DA, DA‐UA and AA‐UA respectively in cyclic voltammetry studies and the corresponding peak potential separations are 230 mV, 130 mV and 354 mV respectively in differential pulse voltammetry. The lowest detection limits obtained for UA, DA and AA were 1×10?7 M, 2×10?7 M and 800×10?9 M respectively. The PDDA/Gr electrode efficiently eliminated the interference of DA and a high concentration of AA in the determination of UA with good selectivity, sensitivity and reproducibility. The modified electrode was also successfully applied for simultaneous determination of UA, DA and AA in their ternary mixture.  相似文献   

8.
利用电聚合方法在石墨烯修饰的玻碳电极表面制备了聚亚甲基蓝/石墨烯修饰电极(PMB/GH/GCE)。采用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了多巴胺(DA)和抗坏血酸(AA)在该修饰电极上的电化学行为。在pH 6.9的磷酸盐缓冲溶液中,DA和AA分别在0.208 V和-0.108 V处产生灵敏的氧化峰,与其在聚亚甲基蓝和石墨烯单层修饰电极上的电化学行为相比,两者的峰电流明显增加,峰电位差达316 mV。研究表明,电聚合方法使亚甲基蓝牢固地非共价修饰到石墨烯上,并产生协同增效作用,较好地提高了电极的灵敏度和分子识别性能,有利于在大量AA存在下实现对DA的选择性测定。在1.00×10-3mol/L AA的存在下,DA的差分脉冲伏安法峰电流与其浓度在1.00×10-7~5.00×10-3mol/L范围内呈良好的线性关系,检出限达1.00×10-8mol/L。将该方法用于盐酸多巴胺注射液的测定,结果满意。  相似文献   

9.
In this paper, a silver doped poly(L ‐valine) (Ag‐PLV) modified glassy carbon electrode (GCE) was fabricated through electrochemical immobilization and was used to electrochemically detect uric acid (UA), dopamine (DA) and ascorbic acid (AA) by linear sweep voltammetry. In pH 4.0 PBS, at a scan rate of 100 mV/s, the modified electrode gave three separated oxidation peaks at 591 mV, 399 mV and 161 mV for UA, DA and AA, respectively. The peak potential differences were 238 mV and 192 mV. The electrochemical behaviors of them at the modified electrode were explored in detail with cyclic voltammetry. Under the optimum conditions, the linear ranges were 3.0×10?7 to 1.0×10?5 M for UA, 5.0×10?7 to 1.0×10?5 M for DA and 1.0×10?5 to 1.0×10?3 M for AA, respectively. The method was successfully applied for simultaneous determination of UA, DA and AA in human urine samples.  相似文献   

10.
Graphene/p-aminobenzoic acid composite film modified glassy carbon electrode (Gr/p-ABA/GCE) was first employed for the sensitive determination of dopamine (DA). The electrochemical behavior of DA at the modified electrode was investigated by cyclic voltametry (CV), differential pulse voltametry (DPV) and amperometric curve. The oxidation peak currents of DA increased dramatically at Gr/p-ABA/GCE. The modified electrode was used to electrochemically detect dopamine (DA) in the presence of ascorbic acid (AA). The Gr/p-ABA composite film showed excellent electrocatalytic activity for the oxidation of DA in phosphate buffer solution (pH 6.5). The peak separation between DA and AA was large up to 220 mV. Using DPV technique, the calibration curve for DA determination was obtained in the range of 0.05-10 μM. The detection limit for DA was 20 nM. AA did not interfere with the determination of DA because of the very distinct attractive interaction between DA cations and the negatively Gr/p-ABA composite film. The proposed method exhibited good stability and reproducibility.  相似文献   

11.
采用电聚合方法在石墨烯纳米片(GN)的表面聚合一层聚对氨基苯磺酸(PABSA),制备了聚对氨基苯磺酸/石墨烯复合修饰玻碳电极(PABSA/GN/GCE)。研究了尿酸(UA)和抗坏血酸(AA)在该修饰电极上的电化学行为。与聚对氨基苯磺酸修饰电极(PABSA/GCE)及石墨烯单层膜修饰电极(GN/GCE)相比,复合修饰电极PABSA/GN/GCE显著提高了对UA和AA的检测灵敏度和分离度。在0.1 mol/L磷酸盐缓冲溶液(pH7.0)中,UA和AA的峰电位差达344 mV,表明PABSA/GN/GCE能实现对UA的选择性测定。UA的峰电流与其浓度呈良好的线性关系,线性范围为1.0×10-7~8.0×10-4mol/L,检出限为4.5×10-8mol/L。该复合修饰电极用于尿样中尿酸的测定,结果满意。  相似文献   

12.
A multiwalled carbon nanotubes (MWNT) modified glassy carbon electrode (GCE) coated with poly(orthanilic acid) (PABS) film (PABS–MWNT/GCE) has been fabricated and used for simultaneous determination of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA) by differential pulse voltammetry (DPV). Scanning electron microscopy, Fourier transform infrared spectra, and electrochemical techniques have been used to characterize the surface morphology of the PABS–MWNT composite film and the polymerization of ABS on electrode surface. In comparison with the bare GCE and the MWNT-modified GCE, the PABS–MWNT composite film-modified GCE, which combines the advantages of MWNT and the self-doped PABS, exhibits good selectivity and sensitivity for the simultaneous and selective determination of UA and DA in the presence of AA. Due to the different electrochemical responses of AA, DA, and UA, PABS–MWNT/GCE can resolve the overlapped oxidation peak of DA and UA into two well-defined voltammetric peaks with enhanced current responses using both cyclic voltammetry (CV) and DPV. The peak potential separations between DA and UA are 170 mV using CV and 160 mV using DPV, respectively, which are large enough for the selective and simultaneous determination of these species. In the presence of 0.5 mM AA, the DPV peak currents are linearly dependent on the concentration of UA and DA in the range of 6–55 and 9–48 μM with correlation coefficients of 0.997 and 0.993, respectively. The detection limits (S/N = 3) for detecting UA and DA are 0.44 and 0.21 μM, respectively. The PABS–MWNT/GCE shows good reproducibility and stability and has been used for the simultaneous determination of DA and UA in the presence of AA in samples with satisfactory results.  相似文献   

13.
The electrosynthesis of polypyrrole (PPy) film has been achieved on glassy carbon electrode (GCE) in aqueous medium of Congo red (CR) by means of cyclic voltammetry (CV). The modified electrode exhibits high electrocatalytic activity toward dopamine (DA) oxidation, with drastic enhancement of the reversibility and peak currents. This modified electrode, due to electrostatic interactions, is capable to mask the response of ascorbic acid (AA) completely and provide an effective method for the detection of minor amounts of dopamine in the presence of high concentrations of AA. The electrochemical response of the film modified electrode is strongly dependent to the switching potential applied in the CV procedure of the electro‐polymerization. The results show that by increasing the switching potential more than 0.75 V, the peak of AA is gradually disappeared. This peak in potential of 0.85 V is reached to capacitive background current. With respect to the destruction of the conjugated structure of ppy and lowering the conductivity of the film at the surface of modified electrode, higher switching potentials cannot be suitable for electropolymerization procedure. The effects of various experimental parameters such as, number of polymerization cycles, switching potential, pH and potential sweep rate on the voltammetric response of dopamine were also investigated. The modified electrode shows a linear response to DA in the range of 0.5 to 100 μM with a detection limit of 0.1 μM. The prepared modified electrode does not show any considerable response toward sulfhydryl compounds, such as, cysteine, penicillamine and glutathione, revealing a good selectivity for voltammetric response to DA. The effective electrocatalytic property, ability for masking the voltammetric responses of the other biological reducing agents together with high reproducibility and stability make the modified electrode suitable for selective and sensitive voltammetric detection of sub‐micromolar amounts of DA in clinical and pharmaceutical preparations.  相似文献   

14.
在抗坏血酸存在下用L-赖氨酸修饰玻碳电极测定多巴胺   总被引:3,自引:0,他引:3  
黄燕生  陈静  许兵  邵会波 《化学通报》2006,69(9):656-660
采用电化学氧化法制备了L-广赖氮酸单分子层修饰玻碳电极,研究了多巴胺(DA)和抗坏血酸(AA)在该电极上的电化学行为。结果表明,L-广赖氨酸单分子层修饰玻碳电极不仅能改善多巴胺和抗坏血酸的电化学行为,而且能将多巴胺和抗坏血酸二者在裸电极上的完全重叠的单氧化峰分开成为两个完全独立的氧化峰,循环伏安(CV)图上峰间距为507mV,差分脉冲伏安(DPV)图上峰间距为460mV,由此可实现在AA的共存下对样品中的DA进行选择性测定。  相似文献   

15.
《Electroanalysis》2005,17(24):2217-2223
Glassy carbon electrode modified by microcrystals of fullerene‐C60 mediates the voltammetric determination of uric acid (UA) in the presence of ascorbic acid (AA). Interference of AA was overcome owing to the ability of pretreated fullerene‐C60‐modified glassy carbon electrode. Based on its strong catalytic function towards the oxidation of UA and AA, the overlapping voltammetric response of uric acid and ascorbic acid is resolved into two well‐defined voltammetric peaks with lowered oxidation potential and enhanced oxidation currents under conditions of both linear sweep voltammetry (LSV) and Osteryoung square‐wave voltammetry (OSWV). At pH 7.2, a linear calibration graph is obtained for UA in linear sweep voltammetry over the range from 0.5 μM to 700 μM with a correlation coefficient of 0.9904 and a sensitivity of 0.0215 μA μM?1 . The detection limit (3σ) is 0.2 μM for standard solution. AA in less than four fold excess does not interfere. The sensitivity and detection limit in OSWV were found as 0.0255 μA μM?1 and 0.12 μM, for standard solution respectively. The presence of physiologically common interferents (i.e. adenine, hypoxanthine and xanthine) negligibly affects the response of UA. The fullerene‐C60‐modified electrode exhibited a stable, selective and sensitive response to uric acid in the presence of interferents.  相似文献   

16.
A carbon‐coated iron nanoparticles (CIN, a new style fullerence related nanomaterial) modified glassy carbon electrode (CIN/GCE) has been developed for the determination of uric acid (UA). Electrochemical behaviors of UA on CIN/GCE were explored by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that the voltammetric response of UA on CIN/GC was enhanced dramatically because of the strong accumulation effect of CIN and the large working area of the CIN/GC electrode. The parameters including the pH of supporting electrolyte, accumulation potential and time, that govern the analytical performance of UA have been studied and optimized. The DPV signal of UA on CIN/GCE increased linearly with its concentration in the range from 5.0×10?7 to 2.0×10?5 M, with a detection limit of 1.5×10?7 M (S/N=3). The CIN/GCE was used for the determination of UA in samples with satisfactory results. The proposed CIN/GCE electrochemical sensing platform holds great promise for simple, rapid, and accurate detection of UA.  相似文献   

17.
The development of a quercetin‐graphene composite‐modified glassy carbon electrode (Qu/GH/GCE) for the selective and sensitive detection of dopamine (DA) is described in this paper. To fabricate the Qu/GH/GCE, graphene (GH) was first coated onto the surface of a glassy carbon electrode (GCE) and then quercetin (Qu) was electrodeposited on the GH matrix. Transmission electron microscopy (TEM) was used to characterize the morphology of the obtained GH and Qu/GH, and the electrochemical properties of the modified electrode were studied using electrochemical techniques. The as‐prepared Qu/GH/GCE occupied a synthetic property between GH and Qu. The common overlapped electrochemical oxidation peaks of DA and AA were completely separated and a remarkable increasing electron‐oxidation current of DA occurred on the Qu/GH/GCE, which enabled the sensitive and selective electrochemical detection of DA in the presence of ascorbic acid (AA) with peak difference of ca. 452 mV between DA and AA. The peak current obtained at 0.174 V (vs. saturated calomel electrode, SCE) from differential pulse voltammetry (DPV) is linearly dependent on the DA concentration in the range from 3.0×10?8 to 4.0×10?4 mol/L with a detection limit of 1.0×10?8 mol/L. Furthermore, the Qu/GH/GCE exhibits good reproducibility and stability, and has been used for the determination of DA in samples of rat’s striatum tissue with satisfactory results.  相似文献   

18.
This work reports on the preparation of electrochemically reduced graphene oxide (ERGO)-poly(eriochrome black T) (pEBT) assembled gold nanoparticles for the simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) in PBS pH 6.0. Characterisations of the composite were carried out by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. As a result of the synergistic effect, the modified glassy carbon electrode (GCE) possessed an efficient electrochemical catalytic activity with a high selectivity and sensitivity in oxidising AA-DA and DA-UA as compared to the bare GCE. The peak separations of AA and DA, DA and UA were 183 mV and 150 mV, respectively. The linear response ranges for AA, DA and UA were 10–900 μM, 0.5–20 μM and 2–70 μM with detection limits of 0.53 μM, 0.009 μM and 0.046 μM (S/N = 3), respectively. The sensitivity of ERGO-pEBT/AuNPs was measured as 0.003 µA/μM, 0.164 µA/μM and 0.034 µA/μM for AA, DA, and UA, respectively. The modified electrochemical sensor was used in the determination of AA, DA, and UA in vitamin C tablets and urine sample with good recovery.  相似文献   

19.
Nanocrystalline graphite-like pyrolytic carbon film (PCF) electrode fabricated by a non-catalytic chemical vapor deposition (CVD) process was used for the simultaneous electrochemical sensing of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The electrode was studied with respect to changes in electrocatalytic activity caused by a simple and fast electrochemical pretreatment. The anodized electrode exhibited excellent performance compared to many chemically modified electrodes in terms of detection limit, linear dynamic range, and sensitivity. Differential pulse voltammetry (DPV) was used for the simultaneous determination of ternary mixtures of DA, AA, and UA. Under optimum conditions, the detection limits were 2.9 μM for AA, 0.04 μM for DA, and 0.03 μM for UA with sensitivities of 0.078, 5.345, and 6.192 A M−1, respectively. The peak separation was 219 mV between AA and DA and 150 mV between DA and UA. No electrode fouling was observed and good reproducibility was obtained in all the experiments. The sensor was successfully applied for the assay of DA in an injectable drug and UA in human urine by using standard addition method.  相似文献   

20.
基于尿嘧啶作为一种碱基,具备一定的分子识别能力,制备了一种新颖的尿嘧啶共价修饰电极,用X射线光电子能谱和电化学方法进行了表征,并研究了酪氨酸、色氨酸、儿茶酚胺(如多巴胺,肾上腺素,去甲肾上腺素)及相关的化合物尿酸、抗坏血酸在该电极上的电化学行为,获得相应的氧化电位、电流灵敏度、线性范围和检测限等信息。其中,色氨酸检测线性范围:1.8 - 120 mM,检测限(s/n=3):0.8 mM;酪氨酸检测线性范围:1.8 - 89mM,检测限(s/n=3):0.8 mM。实验表明,尿嘧啶修饰电极能催化氧化上述电活性物质,但催化能力不同,据此,我们讨论了尿嘧啶与上述物质的相互作用,详细探讨了催化机理,扩展了对基于分子识别的传感器的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号