首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
《Electroanalysis》2006,18(15):1511-1522
Three different types of myoglobin (Mb) layer‐by‐layer films were assembled respectively with TiO2 sol‐gel by vapor‐surface deposition, TiO2 nanoparticles, and poly(styrenesulfonate), designated as {SG‐TiO2/Mb}n, {NP‐TiO2/Mb}n, and {PSS/Mb}n. The permeability of the films was studied and compared by rotating disk voltammetry (RDV) and electrochemical impedance spectroscopy (EIS) with different electroactive probes, showing a general permeability sequence of {SG‐TiO2/Mb}n>{NP‐TiO2/Mb}n>{PSS/Mb}n. The electrochemical and electrocatalytic activity of Mb in these films were also investigated and compared by cyclic voltammetry (CV), RDV, and amperometry, indicating that among the three Mb films, {SG‐TiO2/Mb}n films demonstrated the highest maximum surface concentration of electroactive Mb and the best electrocatalytic performances toward reduction of H2O2. All these advantages could be attributed to the unique architecture and porous structure of {SG‐TiO2/Mb}n films, which could greatly facilitate the mass transport of small counterions and catalytic substrates within the films. The various influencing factors on the permeability, electrochemistry, and electrocatalysis of the Mb films were also investigated in detail.  相似文献   

2.
《Electroanalysis》2004,16(19):1637-1641
A novel nitrite sensor was developed based on the immobilization of a partially quaternized poly(4‐vinylpyridine) complexed with [Os(bpy)2Cl]+/2+ (PVP‐Os) in a porous TiO2 sol‐gel matrix by a vapor deposition method. The preparation process simplified the traditional sol‐gel process and prevented the cracking of conventional sol‐gel derived glasses. Electrochemical behavior of the sensor was characterized by cyclic voltammetry and shows excellent electrocatalytic response for the reduction of nitrite. Effect of operating potential on electrochemical responses of the sensor was explored for optimum analytical performance by using the amperometric method. The stability of the sensor was also evaluated.  相似文献   

3.
The adsorption of carboxylic acids (formic, acetic, and pyruvic acid) from corresponding solutions in CH2Cl2 solvent on Al2O3 and TiO2 thin films has been studied by attenuated total reflection infrared spectroscopy. The metal‐oxide films were vapor‐deposited on a Ge internal reflection element, which was mounted into a specially designed flow cell. The system allowed in situ monitoring of the processes occurring at the solid‐liquid interface. The metal‐oxide films were characterized by X‐ray photoelectron spectroscopy, ellipsometry, and atomic force microscopy. Formic acid and acetic acid adsorbed predominantly as bridging species on alumina surfaces. Adsorbed free acids were not observed under a flow of neat solvent. Based on the position of the νAS(COO) and of the keto‐group stretching vibration of the pyruvate ion, pyruvic acid is proposed to coordinate to the Al2O3 surface in a monodentate fashion, whereas, on TiO2, a bidentate species is preferred. Comparison of the adsorption behavior on the vapor‐deposited alumina film and on an α‐Al2O3 layer deposited from a water suspension of the corresponding metal‐oxide powder indicated that pyruvic acid adsorbs in a similar mode, irrespective of the metal‐oxide deposition technique.  相似文献   

4.
We report on the process of lithium intercalation in V2O5 thin films deposited onto standard ITO‐coated glass substrates. The films were deposited via a well‐established sol–gel route, and the samples were examined as working electrodes in a range of potentials versus lithium reference electrode. This paper follows up issues arising from parallel spectroscopic characterizations of the films by X‐ray photoelectron spectroscopy (XPS). Specifically, the XPS examination showed that not all of the Li‐ion charge inserted was accounted for by the V(5) to V(4) reduction, but the stoichiometric balance could be maintained only by considering additional oxygens arising from the intercalation procedure, leading to Li2O formation. In this work, we have examined the possibility that the source of oxygen is the ITO substrate. To this purpose, films of V2O5 deposited on silicon substrates have been prepared using the sol–gel process and examined by XPS after electrochemical intercalation/de‐intercalation cycles. We show that in this case a perfect balance between electrochemical charge, inserted Li and reduced vanadium is obtained. A further indication of ITO‐substrate effects was obtained from examination, by the same methods, of some unconventional V2O5 films that had been co‐precipitated with a siloxane, designed to provide a template structure. The results obtained from this material imply that a barrier layer is formed at the ITO interface and, therefore, the formation of Li2O is avoided. The results are discussed in terms of the possible degradation of conventional V2O5 on ITO as a result of electrochemically induced interface reactions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, effects of ethylene glycol (EG) and indium tin oxide (ITO) solution on the morphology, porosity, and roughness of TiO2 film prepared by sol‐gel process were investigated and discussed. Initially, the addition of EG were used to control the viscosity of the solution and it was found to increase the pore size of TiO2 film. The various TiO2 films were investigated and characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) and then assembled to dye‐sensitized solar cell (DSSC) to measure the photoelectric conversion efficiency. The optimum efficiencies of 1.32% with Jsc and Voc of 2.99 mA/cm2 and 0.80 V, respectively, were obtained by the TiO2 film prepared from a solution containing 20 wt% EG.  相似文献   

6.
二氧化钛多相催化是一种极具前途的环境污染深度净化技术。 本文以钛酸四丁酯和四氯化锡为原料,无水乙醇为溶剂,采用溶胶-凝胶法制备了掺杂二氧化锡的二氧化钛薄膜和复合氧化物粉体。通过测量薄膜的吸收光谱推算光学能隙,结果发现掺杂样品的光学能隙比纯二氧化钛样品有所变小。随着热处理温度的提高,掺杂和纯二氧化钛样品的光学能隙都略微降低。X-射线衍射分析表明,复合氧化物粉体的热处理温度对样品的晶体结构和光催化性能有重要影响。以掺杂二氧化锡5 % 摩尔比的样品与纯二氧化钛对照,500 ℃以下热处理样品以锐钛矿结构为主,600 ℃热处理样品为锐钛矿与金红石相共存,并显示了较好的光催化性能。透射电子显微镜观察显示,同样600 ℃热处理,掺杂样品要比纯二氧化钛具有更小的颗粒尺寸。在700 ℃热处理的样品中,掺杂样品只存在金红石相而纯二氧化钛样品中仍存有锐钛矿相。用阿伦尼乌斯经验关系式推测的晶粒生长的活化能,纯二氧化钛47.486 kJ.mol, 掺杂5 % 摩尔比的复合氧化物样品33.103 kJ.mol。以亚甲基蓝为降解物质,考察了掺杂量和热处理温度对样品的光催化性能。  相似文献   

7.
Thin sol–gel TiO2 layers deposited on the conductive ITO glass by means of three various deposition techniques (dip-coating, inkjet printing and spray-coating) were used as photoanode in the three-compartment electrochemical cell. The thin TiO2 films were treated at 450 °C and after calcination all samples possessed the crystallographic form of anatase. The relationship between surface structure and photo-induced conductivity of the nanostructured layers was investigated. It was found that the used deposition method significantly influenced the structural properties of prepared layers; mainly, the formation of defects and their quantity in the prepared films. The surface properties of the calcined layers were determined by XRD, Raman spectroscopy, SEM, AFM, UV–Vis analyses and by the optical microscopy. The photo-induced properties of nanoparticulate TiO2/ITO photoanode were studied by electrochemical measurements combined with UV irradiation.  相似文献   

8.
Double‐shelled zirconia/titania (ZrO2/TiO2) hollow microspheres were prepared by the selective removal of the polymer components via the calcination of the corresponding tetra‐layer poly(N,N′‐methylenebisacryl amide‐co‐methacrylic acid) (P(MBA‐co‐MAA))/Zr(OH)4/poly(ethyleneglycol dimethacrylate‐co‐methacrylic acid) (P(EGDMA‐co‐MAA))/TiO2 hybrid microspheres. These tetra‐layer microspheres were synthesized by the combination of the distillation copolymerization of N,N(‐methylenebisacryl amide‐co‐methacrylic acid (MBA) or ethyleneglycol dimethacrylate (EGDMA) crosslinker and methacrylic acid (MAA) for the preparation of polymer core and third‐layer as well as the controlled sol‐gel hydrolysis of inorganic precursors for the construction of zirconium hydroxide (Zr(OH)4) and titania (TiO2) layers. The thicknesses of zirconia and titania shell‐layers were conveniently controlled via varying the feed of zirconium n‐butoxide (Zr(OBu)4) and titanium tetrabutoxide (TBOT) during the sol‐gel hydrolysis, while the sizes of polymer layers were tuned through a multi‐stage distillation precipitation copolymerization. The structure and morphology of the resultant microspheres were characterized by transmission electron microscopy (TEM), X‐ray diffractometer (XRD), X‐ray photoelectronic spectroscopy (XPS), and thermogrametric analysis (TGA).  相似文献   

9.
Composite photocatalysts of CuO/CoFe2O4‐TiO2 were successfully synthesized by a sol‐gel method and fixed on ordinary tiles. The photosterilization of Escherichia coli was examined on CuO/CoFe2O4‐TiO2 thin films under a xenon lamp irradiation. The film was characterized by XRD, and the morphology was observed by SEM. Disinfection data indicated that CuO/CoFe2O4‐TiO2 composite photocatalysts have the much better photocatalytic activity than CuO/CoFe2O4 and TiO2. The optimized composition of the nanocomposites has been found to be mCuO/CoFe2O4:mTiO2=3:7, with loadings ranging from 790 to 1400 mg/m2. The photocatalytic inactivated rate of E. coli (105 CFU/mL) reached 98.4% under the xenon lamp of 150 W within 30 min.  相似文献   

10.
Photocatalytic multilayer nanocomposite films composed of anatase TiO2 nanoparticles and lignosulfonates (LS) were fabricated on quartz slides by the layer‐by‐layer (LBL) self‐assembly technique. X‐ray photoelectron spectroscopy (XPS), UV‐vis spectroscopy and atomic force microscopy (AFM) were used to characterize the TiO2/LS multilayer nanocomposite films. Moreover, the photocatalytic properties (decomposition of methyl orange and bacteria) of multilayer nanocomposite films were investigated. XPS results indicated that the intensities of titanium and sulfur peaks increased with the LBL deposition process. A linear increase in absorbance at 280 nm was found by UV‐Vis spectroscopy, suggesting that stepwise multilayer growth occurs on the substrate and this deposition process is highly reproducible. AFM images showed that quartz slide was completely covered by TiO2 nanoparticles when a 10‐bilayer multilayer film was formed. The decomposition efficiency of methyl orange by TiO2/LS multilayer films under the same UV irradiation time increased linearly with the number of TiO2 layers, and the results of decomposition of bacteria under UV irradiation showed that TiO2/LS multilayer nanocomposite films exhibited excellent decomposition activity of bacteria (Escherichia coil).  相似文献   

11.
The effect of the number and arrangement of TiO2‐based photoanode layers on the efficiency of dye‐sensitized solar cells (DSSCs) was investigated. Compact, mesoporous, and blocking layers of TiO2 were prepared to form monolayer, bilayer, and trilayer photoanodes. Compact and blocking TiO2 layers were prepared using dip‐coating technique, whereas the doctor‐blade method was employed to prepare TiO2 paste layers using nanoparticles prepared by the sol–gel method. The crystalline structure of photoanodes was characterized by X‐ray diffraction (XRD) measurements and their morphology and thickness were characterized by the scanning electron microscopy (SEM) technique. The photovoltaic performance of constructed DSSC devices was investigated and the optimum arrangement was identified and explained in terms of dye loading enhancement and recombination reduction at the fluorine‐doped tin oxide (FTO)/electrolyte interface.  相似文献   

12.
Cr‐doped TiO2/SiO2 nanostructured materials were prepared employing a layer‐by‐layer assemblym technique. TiO2 colloids were synthesized by a sol‐gel method using TiCl4 as a precursor. The experimental results showed that sphere‐type TiO2 particles on SiO2 exhibited uniform shape and a narrow size distribution. The amount of Ti (wt %) increased as a function of the number of the coating layers. The coatingv layers was composed of anatase titania nanocrystals at 550 °C. The onset of band‐gap transition for Crdoped TiO2/SiO2 showed a red shift compared with that for the undoped TiO2/SiO2. And the photocatalytic activity of Cr‐doped TiO2/SiO2 was higher than that of undoped sample.  相似文献   

13.
A novel strategy to improve the sensitivity of molecularly imprinted polymer (MIP) sensors was proposed for the determination of β2‐agonists. The imprinted sol‐gel film was prepared by mixing silica sol with a functional monomer of antimony‐doped tin oxide (ATO) and a template of β2‐agonists. ATO, which was embedded in the surface of the molecularly imprinted sol‐gel film, not only provides the excellent conductivity for biosensor but also increases the stability and the surface area of the MIP film. The imprinted sensor was characterised by field emission scanning electron microscope, fourier transform infrared spectroscopy and electrochemical methods. Under the optimal experimental conditions, the peak current was linear with the logarithm of the concentration of clenbuterol (CLB) in the range of 5.5 nM–6.3 µM, and a detection limit of 1.7 nM was obtained. Meanwhile, the electrochemical sensor showed excellent specific recognition of the template molecule among structurally similar coexisting substances. Furthermore, the proposed sensor was satisfactorily applied to determine β2‐agonists in human serum samples. The good results indicated that highly effective molecularly imprinted sol‐gel films doped with ATO can be employed for other analytes.  相似文献   

14.
Porous microspherical Li4Ti5O12 aggregates (LTO‐PSA) can be successfully prepared by using porous spherical TiO2 as a titanium source and lithium acetate as a lithium source followed by calcinations. The synthesized LTO‐PSA possess outstanding morphology, with nanosized, porous, and spherical distributions, that allow good electrochemical performances, including high reversible capacity, good cycling stability, and impressive rate capacity, to be achieved. The specific capacity of the LTO‐PSA at 30 C is as high as 141 mA h g?1, whereas that of normal Li4Ti5O12 powders prepared by a sol–gel method can only achieve 100 mA h g?1. This improved rate performance can be ascribed to small Li4Ti5O12 nanocrystallites, a three‐dimensional mesoporous structure, and enhanced ionic conductivity.  相似文献   

15.
Multiwalled carbon nanotubes (MWCNT) have been functionalized, for the electrocatalytic detection of NADH, by microwave treatment, electrochemical deposition of poly(methylene green) or wrapping with an Os‐complex modified polymer. Sol‐gel thin films have been then electrodeposited on the carbon nanotube layers for co‐immobilization of D ‐sorbitol dehydrogenase and diaphorase when necessary and NAD+ via covalent linkage using glycidoxypropyltrimethoxysilane. The comparison of these systems shows that the electrodeposited sol‐gel matrix can significantly affect the operational behavior of functionalized MWCNT. Only MWCNT wrapped with the Os‐complex modified polymer and covered with a sol‐gel biocomposite allowed the electrochemical detection of D ‐sorbitol in a reagentless configuration.  相似文献   

16.
《Electroanalysis》2006,18(5):471-477
The precursor film was first formed on the Au electrode surface based on the self‐assembly of L ‐cysteine and the adsorption of gold colloidal nanoparticles (nano‐Au). Layer‐by‐layer (LBL) assembly films of toluidine blue (TB) and nano‐Au were fabricated by alternately immersing the electrode with precursor film into the solution of toluidine blue and gold colloid. Cyclic voltammetry (CV) and quartz crystal microbalance (QCM) were adopted to monitor the regular growth of {TB/Au} bilayer films. The successful assembly of {TB/Au}n films brings a new strategy for electrochemical devices to construct layer‐by‐layer assembly films of nanomaterials and low molecular weight materials. In this article, {TB/Au}n films were used as model films to fabricate a mediated H2O2 biosensor based on horseradish peroxidase, which responded rapidly to H2O2 in the linear range from 1.5×10?7 mol/L to 8.6×10?3 mol/L with a detection limit of 7.0×10?8 mol/L. Morphologies of the final assembly films were characterized with scanning probe microscopy (SPM).  相似文献   

17.
Catalytic direct dehydrogenation of methanol to formaldehyde was carried out over Ag‐SiO2‐MgO‐Al2O3 catalysts prepared by sol‐gel method. The optimal preparation mass fractions were determined as 8.3% MgO, 16.5% Al2O3 and 20% silver loading. Using this optimum catalyst, excellent activity and selectivity were obtained. The conversion of methanol and the selectivity to formaldehyde both reached 100%, which were much higher than other previously reported silver supported catalysts. Based on combined characterizations, such as X‐ray diffraction (XRD), scanning electronic microscopy (SEM), diffuse reflectance ultraviolet‐visible spectroscopy (UV‐Vis, DRS), nitrogen adsorption at low temperature, temperature programmed desorption of ammonia (NH3‐TPD), desorption of CO2 (CO2‐TPD), etc., the correlation of the catalytic performance to the structural properties of the Ag‐SiO2‐ MgO‐Al2O3 catalyst was discussed in detail. This perfect catalytic performance in the direct dehydrogenation of methanol to formaldehyde without any side‐products is attributed to its unique flower‐like structure with a surface area less than 1 m2/g, and the strong interactions between neutralized support and the nano‐sized Ag particles as active centers.  相似文献   

18.
Copper‐doped iron sulfide (CuxFe1?xS, x = 0.010–0.180) thin films were deposited using a single‐source precursor, Cu(LH)2Cl2 (LH = monoacetylferrocene thiosemicarbazone), by aerosol‐assisted chemical vapor deposition technique. The Cu‐doped FeS thin films were deposited at different substrate temperatures, i.e. 250, 300, 350, 400 and 450 °C. The deposited thin films were characterized by X‐ray diffraction (XRD) patterns, Raman spectra, scanning electron microscopy, energy dispersive X‐ray analysis (EDX) and atomic force microscopy. XRD studies of Cu‐doped FeS thin films at all the temperatures revealed formation of single‐phase FeS structure. With increasing substrate temperature from 250 to 450 °C, there was change in morphology from wafer‐like to cylindrical plate‐like. EDX analysis showed that the doping percentage of copper increased as the substrate temperature increased from 250 to 450 °C. Raman data supports the doping of copper in FeS films. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Hollow structures show both light scattering and light trapping, which makes them promising for dye‐sensitized solar cell (DSSC) applications. In this work, nanoparticulate hollow TiO2 fibers are prepared by layer‐by‐layer (LbL) self‐assembly deposition of TiO2 nanoparticles on natural cellulose fibers as template, followed by thermal removal of the template. The effect of LbL parameters such as the type and molecular weight of polyelectrolyte, number of dip cycles, and the TiO2 dispersion (amorphous or crystalline sol) are investigated. LbL deposition with weak polyelectrolytes (polyethylenimine, PEI) gives greater nanoparticle deposition yield compared to strong polyelectrolytes (poly(diallyldimethylammonium chloride), PDDA). Decreasing the molecular weight of the polyelectrolyte results in more deposition of nanoparticles in each dip cycle with narrower pore size distribution. Fibers prepared by the deposition of crystalline TiO2 nanoparticles show higher surface area and higher pore volume than amorphous nanoparticles. Scattering coefficients and backscattering properties of fibers are investigated and compared with those of commercial P25 nanoparticles. Composite P25–fiber films are electrophoretically deposited and employed as the photoanode in DSSC. Photoelectrochemical measurements showed an increase of around 50 % in conversion efficiency. By employing the intensity‐modulated photovoltage and photocurrent spectroscopy methods, it is shown that the performance improvement due to addition of fibers is mostly due to the increase in light‐harvesting efficiency. The high surface area due to the nanoparticulate structure and strong light harvesting due to the hollow structure make these fibers promising scatterers in DSSCs.  相似文献   

20.
The electrocatalytic oxidation of nicotinamide adenine dinucleotide (NADH) was studied on nanoTiO2 modified sol‐gel electrode, using cyclic voltammetry, chronoamperometry and differential pulse voltammetry as diagnostic techniques. It is demonstrated that TiO2 nanoparticles on sol‐gel network catalyze the oxidation of NADH in the absence of any electron transfer mediators. Effect of various parameters such as pH, scan rate, TiO2 percentage on the response of modified electrode was studied. In addition, scanning electron microscopy (SEM) was used to characterize the surface morphology of the spots. A dynamic range between 0.5–50 μM with detection limit of 0.35 μM was obtained with DPV studies. This method was successfully used for determination of NADH in cucumber cotyledons samples. The electrode showed relatively good stability over more than 2 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号