首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: BACKGROUND: The molecular basis of the increased susceptibility of steatotic livers to warm ischemia/reperfusion (I/R) injury during transplantation remains undefined. Animal model for warm I/R injury was induced in obese Zucker rats. Lean Zucker rats provided controls. Two dimensional differential gel electrophoresis was performed with liver protein extracts. Protein features with significant abundance ratios (p < 0.01) between the two cohorts were selected and analyzed with HPLC/MS. Proteins were identified by Uniprot database. Interactive protein networks were generated using Ingenuity Pathway Analysis and GRANITE software. RESULTS: The relative abundance of 105 proteins was observed in warm I/R injury. Functional grouping revealed four categories of importance: molecular chaperones/endoplasmic reticulum (ER) stress, oxidative stress, metabolism, and cell structure. Hypoxia up-regulated 1, calcium binding protein 1, calreticulin, heat shock protein (HSP) 60, HSP-90, and protein disulfide isomerase 3 were chaperonins significantly (p < 0.01) down-regulated and only one chaperonin, HSP-1was significantly upregulated in steatotic liver following I/R. CONCLUSION: Down-regulation of the chaperones identified in this analysis may contribute to the increased ER stress and, consequently, apoptosis and necrosis. This study provides an initial platform for future investigation of the role of chaperones and therapeutic targets for increasing the viability of steatotic liver allografts.  相似文献   

2.
Bull VH  Thiede B 《Electrophoresis》2012,33(12):1814-1823
Endoplasmic reticulum (ER) stress occurs upon increased levels of unfolded proteins and results in activation of cellular responses such as the unfolded protein response (UPR) and ER-associated protein degradation (ERAD). To examine ER stress, we performed a quantitative proteome analysis of human neuroblastoma cells using stable isotope labeling with amino acids in cell culture (SILAC) in combination with SDS-PAGE and LC-MS/MS. Proteins associated with the ER were overrepresented in the dataset of altered proteins. In particular, ER chaperones responsible for protein folding were significantly upregulated in response to ER stress. The important ER stress regulator 78 kDa glucose-regulated protein (GRP-78 or BiP) was highly upregulated together with several proteins that have been found to form a multiprotein complex with BiP including cyclophilin B, DnaJ homolog subfamily B member 11, endoplasmin, hypoxia upregulated protein 1, protein disulfide isomerase and protein disulfide isomerase A4 upon tunicamycin-induced ER stress. Furthermore, seven aminoacyl-tRNA synthetases and five proteins belonging to the Sec61 complex were increased in response to tunicamycin-induced ER stress.  相似文献   

3.
Toxoplasma gondii is a protozoan parasite infecting almost all warm‐blooded animals and humans. There are three infective stages of T. gondii: the tachyzoites, the bradyzoites, and the oocysts. The tachyzoite is a rapidly multiplying stage and the main pathogenic factor. In North America and Europe, T. gondii is consisted of four major clonal lineages (namely Types I, II, III, and Type 12). In this study, we explored the proteomic profiles of different genotypes (Type I‐RH strain, Type II‐PRU strain, Type II‐TgQHO strain, and ToxoDB 9‐TgC7 strain) of T. gondii tachyzoites by using 2D DIGE combined with MALDI‐TOF MS. Totally, 110 differentially abundant protein spots were selected. Of these, 98 spots corresponding to 56 proteins from T. gondii were successfully identified. These included surface antigen (SAG1), heat shock protein 70 (Hsp 70), disulfide isomerase, coronin, heat shock protein 60 (Hsp 60), pyruvate kinase, receptor for activated C kinase 1, and peroxiredoxin. Gene ontology enrichment analysis revealed that most of the differentially abundant proteins were involved in biological regulation, metabolic process, response to stress, binding, antioxidant activity, and transporter activity. According to the KEGG metabolic pathway maps of T. gondii, some identified proteins were involved in the glycolytic/gluconeogenesis pathway. The present study identified differentially abundant proteins among different genotypes of T. gondii and these findings have implications for the better understanding of the phenotypic differences among the examined T. gondii genotypes, which in turn may contribute to the better control of toxoplasmosis.  相似文献   

4.
A UPLC‐TOF/MS‐based metabolomics method was established to explore the therapeutic mechanisms of rattan stems of S. chinensis (SCS) in Alzheimer's disease (AD). Experimental AD model was induced by intra‐hippocampal Aβ1–42 injection in rats. Cognitive function and oxidative stress condition in brain of AD rats were assessed using Morris water maze tests and antioxidant assays [malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH‐Px)], respectively. UPLC‐TOF/MS combined with multivariate statistical analysis were conducted to study the changes in metabolic networks in serum of rats. The results indicated that the AD model was established successfully and the inducement of Aβ1–42 caused a decline in spatial learning and memory of rats. The injection of Aβ1–42 in rat brains significantly elevated the level of MDA, and reduced SOD and GSH‐Px activities. In addition, SCS showed significant anti‐AD effects on model rats. A total of 30 metabolites were finally identified as potential biomarkers of AD and 14 of them had a significant recovery compared with the AD model after SCS administration. Changes in AD metabolite profiling were restored to different levels through the regulation of 13 pathways. This is first report on the use of the UPLC‐TOF/MS‐based serum metabolomics method to investigate therapeutic effects of SCS on AD, and enrich potential biomarkers and metabolic networks of AD.  相似文献   

5.
Bacteriophage (phage) proteins have been analyzed previously with matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). However, analysis of phage major capsid proteins (MCPs) has been limited by the ability to reproducibly generate ions from MCP monomers. While the acidic conditions of MALDI‐TOF MS sample preparation have been shown to aid in disassembly of some phage capsids, many require further treatment to successfully liberate MCP monomers. The findings presented here suggest that β‐mercaptoethanol reduction of the disulfide bonds linking phage MCPs prior to mass spectrometric analysis results in significantly increased MALDI‐TOF MS sensitivity and reproducibility of Yersinia pestis‐specific phage protein profiles. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The present study describes the N,N-dimethylformamide (DMF)-induced oxidative stress in Paracoccus sp. SKG. The oxidative stress was evaluated by analysing membrane and periplasmic proteins and K+ efflux, as well as by monitoring the activities of antioxidant enzymes like catalase, superoxide dismutase (SOD) and glutathione S-transferase (GST). The exposure of bacterial cells to a higher concentration of DMF resulted in the modification of membrane fatty acid composition which is accompanied by K+ efflux. Further, this oxidative stress resulted in increased periplasmic protein which can be attributed to the induction of GST and methionine sulphoxide reductase (Msr) enzymes under solvent stress. Paracoccus sp. SKG is tolerant to high concentrations of DMF up to 6 % (v/v) and its toxic effects. DMF concentration-dependent induction of GST and Msr activities advocates the significant role of these enzymes in the bacterial defence system. The present study provides information which helps us to understand the ROS scavenging machinery in bacteria. The high tolerance of Paracoccus sp. SKG to DMF can be efficiently explored for various bioremediation and biotransformation applications.  相似文献   

7.
The protective antioxidative effect of the phenolic extract (PE) isolated from Salix viminalis pyrolysis derived bio-oil was shown in vitro on the Chinese hamster ovary (CHO) cells exposed to hydrogen peroxide (H2O2). Cells pretreated with 0.05 μg/ml PE after exposure to different concentrations of H2O2 (300–900 μM) showed up to 25 % higher viability than the unpretreated ones. The antioxidative effect of PE was also observed in a time-dependent manner. The results were confirmed by visual examination of the specimens using microscopy. Finally, superoxide dismutase (SOD) activity modulation was shown by SOD assay, designed to determine the activity of enzymes removing free radicals.  相似文献   

8.
Flumorph is an Oomycete fungicide, which is used extensively as an effective fungicide in vegetables and fruits, but little is known about its effect on nontarget soil organisms. In the present study, biochemical responses including changes in the activity of antioxidative enzymes catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST), malondialdehyde (MDA), and DNA damage induced by flumorph were investigated in earthworms (Eisenis fetida). The CAT concentrations were stimulated at 5.0 mg kg?1 over 28 days and inhibited at 10 and 20 mg kg?1, except 10 mg kg?1 on days 21 and 28 compared with the controls. The overall SOD activities were inhibited except 5 mg kg?1 on day 28 and 10 mg kg?1 on days 7 and 14. Meanwhile, the GST activities were stimulated on day 7 and decreased on the other days in summary. The MDA activities were increased notably at 5, 10, and 20 mg kg?1 after 14 days. Clear dose-dependent DNA damage to Eisenia fetida was observed by olive tail moments in comet assay compared with controls. The results demonstrate that flumorph induces oxidative stress and DNA damage to earthworms, and the effects may be the important mechanisms of its toxicity.  相似文献   

9.
Sugarcane is an important commercial crop cultivated for its stalks and sugar is a prized commodity essential in human nutrition. Proteomics of sugarcane is in its infancy, especially when dealing with the stalk tissues, where there is no study to date. A systematic proteome analysis of stalk tissue yet remains to be investigated in sugarcane, wherein the stalk tissue is well known for its rigidity, fibrous nature, and the presence of oxidative enzymes, phenolic compounds and extreme levels of carbohydrates, thus making the protein extraction complicated. Here, we evaluated five different protein extraction methods in sugarcane stalk tissues. These methods are as follows: direct extraction using lysis buffer (LB), TCA/acetone precipitation followed by solubilization in LB, LB containing thiourea (LBT), and LBT containing tris, and phenol extraction. Both quantitative and qualitative protein analyses were performed for each method. 2‐DE analysis of extracted total proteins revealed distinct differences in protein patterns among the methods, which might be due to their physicochemical limitations. Based on the 2‐D gel protein profiles, TCA/acetone precipitation‐LBT and phenol extraction methods showed good results. The phenol method showed a shift in pI values of proteins on 2‐D gel, which was mostly overcome by the use of 2‐D cleanup kit after protein extraction. Among all the methods tested, 2‐D cleanup‐phenol method was found to be the most suitable for producing high number of good‐quality spots and reproducibility. In total, 30 and 12 protein spots commonly present in LB, LBT and phenol methods, and LBT method were selected and subjected to eLD‐IT‐TOF‐MS/MS and nESI‐LC‐MS/MS analyses, respectively, and a reference map has been established for sugarcane stalk tissue proteome. A total of 36 nonredundant proteins were identified. This is a very first basic study on sugarcane stalk proteome analysis and will promote the unexplored areas of sugarcane proteome research.  相似文献   

10.
Herein, we report an effective and rapid method to purify glutathione S‐transferase (GST) using glutathione (GSH)‐modified poly(N‐isopropylacrylamide) (pNIPAAm) and mild, thermal conditions. A chain transfer agent modified with pyridyl disulfide was employed in the reversible addition–fragmentation chain transfer (RAFT) polymerization of NIPAAm. The resulting polymer had a narrow molecular weight distribution (polydispersity index = 1.21). Conjugation of GSH to the pyridyl disulfide–pNIPAAm reached 95% within 30 min as determined by UV–Vis monitoring of the release of pyridine‐2‐thione. GST was successfully thermoprecipitated upon heating the GSH–pNIPAAm above the lower critical solution temperature (LCST). The pull down assay was repeated with bovine serum albumin (BSA) and T4 lysozyme (T4L), which demonstrated the specificity of the polymer for GST. Due to its simplicity and high efficiency, this method holds great potential for large‐scale purification of GST‐tagged proteins.

  相似文献   


11.
5‐Fluorouracil has been the chemotherapy agent of first‐choice for colorectal cancer for many years, but since there are no proven predictors of a patient's response to therapy, all patients receive similar treatment. Consequently, identification of biomarkers for therapeutic effect is crucial for the development of novel therapeutic strategies. Two human colorectal cancer cell lines of different metastatic potential (LoVo and SW480) were studied. IC50 of 5‐FU for both cell lines were measured by 3‐(4,5‐dimethy‐lthiazol‐2‐yl)‐2,5‐diphenyltetrazolium assay and validated by cell cycle analysis. Then the cell lines were treated with 5‐FU at IC50 concentration and protein was extracted for 2‐DE. Differential protein spots were examined by MALDI‐TOF/TOF MS. The expression levels of the different proteins were further confirmed by Western blot and immunofluorescence analyses. Eleven proteins were identified. Expression of heterogeneous nuclear ribonucleoprotein K (hnRNP K) in LoVo cells was higher than in SW480 cells, while protein disulfide isomerase (PDI) displayed the opposite trend. After treatment with 5‐FU, the expression of hnRNP K in LoVo decreased more significantly than in SW480, while PDI in SW480 increased more significantly than in LoVo cells. Conclusion: hnRNP K and PDI in the two cell lines have different expression characteristics. The sensitivity to 5‐FU is not consistent in tumor progression. It may assist in development of novel treatment strategies for colorectal cancer metastasis.  相似文献   

12.
Palm oil is an edible vegetable oil derived from lipid‐rich fleshy mesocarp tissue of oil palm (Elaeis guineensis Jacq.) fruit and is of global economic and nutritional relevance. While the understanding of oil biosynthesis in plants is improving, the fundamentals of oil biosynthesis in oil palm still require further investigations. To gain insight into the systemic mechanisms that govern oil synthesis during oil palm fruit ripening, the proteomics approach combining gel‐based electrophoresis and mass spectrometry was used to profile protein changes and classify the patterns of protein accumulation during these complex physiological processes. Protein profiles from different stages of fruit ripening at 10, 12, 14, 15, 16, 18 and 20 weeks after anthesis (WAA) were analysed by two‐dimensional gel electrophoresis (2DE). The proteome data were then visualised using a multivariate statistical analysis of principal component analysis (PCA) to get an overview of the proteome changes during the development of oil palm mesocarp. A total of 68 differentially expressed protein spots were successfully identified by matrix‐assisted laser desorption/ionisation‐time of flight (MALDI‐TOF/TOF) and functionally classified using ontology analysis. Proteins related to lipid production, energy, secondary metabolites and amino acid metabolism are the most significantly changed proteins during fruit development representing potential candidates for oil yield improvement endeavors. Data are available via ProteomeXchange with identifier PXD009579. This study provides important proteome information for protein regulation during oil palm fruit ripening and oil synthesis.  相似文献   

13.
The use of electromagnetic field (EMF) generating apparatuses such as cell phones is increasing, and has caused an interest in the investigations of its effects on human health. We analyzed proteome in preparations from the whole testis in adult male Sprague‐Dawley rats that were exposed to 900 MHz EMF radiation for 1, 2, or 4 h/day for 30 consecutive days, simulating a range of possible human cell phone use. Subjects were sacrificed immediately after the end of the experiment and testes fractions were solubilized and separated via high‐resolution 2D electrophoresis, and gel patterns were scanned, digitized, and processed. Thirteen proteins, which were found only in sham or in exposure groups, were identified by MALDI‐TOF/TOF‐MS. Among them, heat shock proteins, superoxide dismutase, peroxiredoxin‐1, and other proteins related to misfolding of proteins and/or stress were identified. These results demonstrate significant effects of radio frequency modulated EMFs exposure on proteome, particularly in protein species in the rodent testis, and suggest that a 30‐day exposure to EMF radiation induces nonthermal stress in testicular tissue. The functional implication of the identified proteins was discussed.  相似文献   

14.
The living free radical polymerizations of three “less activated” monomers (LAMs), vinyl acetate, N‐vinylcarbazole, and N‐vinylpyrrolidone, were successfully achieved in the presence of a disulfide, isopropylxanthic disulfide (DIP), using 2,2′‐azoisobutyronitrile (AIBN) as the initiator. The living behaviors of polymerizations of LAMs are evidenced by first‐order kinetic plots and linear increase of molecular weights (Mns) of the polymers with monomer conversions, while keeping the relatively low molecular weight distributions, respectively. The effects of reaction temperatures and molar ratios of components on the polymerization were also investigated in detail. The polymerization proceeded with macromolecular design via interchange of xanthate process, where xanthate formed in situ from reaction of AIBN and DIP. The architectures of the polymers obtained were characterized by GPC, 1H NMR, UV–vis, and MALDI‐TOF‐MS spectra, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
Nano zinc oxide (nZnO) is increasingly used in sunscreen products, with high potential of being released directly into marine environments. This study primarily aimed to characterize the aggregate size and solubility of nZnO and bulk ZnO, and to assess their toxicities towards five selected marine organisms. Chemical characterization showed that nZnO formed larger aggregates in seawater than ZnO, while nZnO had a higher solubility in seawater (3.7 mg L−1) than that of ZnO (1.6 mg L−1). Acute tests were conducted using the marine diatoms Skeletonema costatum and Thalassiosia pseudonana, the crustaceans Tigriopus japonicus and Elasmopus rapax, and the medaka fish Oryzias melastigma. In general, nZnO was more toxic towards algae than ZnO, but relatively less toxic towards crustaceans and fish. The toxicity of nZnO could be mainly attributed to dissolved Zn2+ ions. Furthermore, molecular biomarkers including superoxide dismutase (SOD), metallothionein (MT) and heat shock protein 70 (HSP70) were employed to assess the sublethal toxicities of the test chemicals to O. melastigma. Although SOD and MT expressions were not significantly increased in nZnO-treated medaka compared to the controls, exposure to ZnO caused a significant up-regulation of SOD and MT. HSP70 was increased two to fourfold in all treatments indicating that there were probably other forms of stress in additional to oxidative stress such as cellular injury.  相似文献   

16.
UVA‐driven photooxidative stress in human skin may originate from excitation of specific endogenous chromophores acting as photosensitizers. Previously, we have demonstrated that 3‐hydroxypyridine‐derived chromophores including B6‐vitamers (pyridoxine, pyridoxamine and pyridoxal) are endogenous photosensitizers that enhance UVA‐induced photooxidative stress in human skin cells. Here, we report that the B6‐vitamer pyridoxal is a sensitizer of genotoxic stress in human adult primary keratinocytes (HEKa) and reconstructed epidermis. Comparative array analysis indicated that exposure to the combined action of pyridoxal and UVA caused upregulation of heat shock (HSPA6, HSPA1A, HSPA1L, HSPA2), redox (GSTM3, EGR1, MT2A, HMOX1, SOD1) and genotoxic (GADD45A, DDIT3, CDKN1A) stress response gene expression. Together with potentiation of UVA‐induced photooxidative stress and glutathione depletion, induction of HEKa cell death occurred only in response to the combined action of pyridoxal and UVA. In addition to activational phosphorylation indicative of genotoxic stress [p53 (Ser15) and γ‐H2AX (Ser139)], comet analysis indicated the formation of Fpg‐sensitive oxidative DNA lesions, observable only after combined exposure to pyridoxal and UVA. In human reconstructed epidermis, pyridoxal preincubation followed by UVA exposure caused genomic oxidative base damage, procaspase 3 cleavage and TUNEL positivity, consistent with UVA‐driven photooxidative damage that may be relevant to human skin exposed to high concentrations of B6‐vitamers.  相似文献   

17.
Thiol‐reactive methoxy poly (ethylene glycol) (mPEG) derivatives, mPEG methanethiosulfonate (mPEG‐MTS) and mPEG phenylthiosulfonate (mPEG‐PTS), were synthesized by one‐step S‐alkylation of mPEG‐halide with the corresponding sodium thiosulfonate. These functionalized polymers were fully characterized by 1H NMR, 13C NMR, GPC as well as MALDI‐TOF. To demonstrate the potential application of mPEG‐MTS and mPEG‐PTS, papain and recombinant human granulocyte colony‐stimulating factor (rhG‐CSF) were used as prototype protein for thiol‐selective PEGylation. The PEGylated products were verified by one or more of the following methods: SDS‐PAGE, HPLC, HPSEC as well as MALDI‐TOF. Compared with native rhG‐CSF, the PEGylated rhG‐CSF was further characterized by in vitro cell proliferative assay and preserved 59% biological activity. Furthermore, mPEG20k‐MTS was used to modify BSA nanoparticles coated with thiol groups. FT‐IR and ζ‐potential assay demonstrated that mPEG thiosulfonate can be effectively immobilized at the nanoparticles' surface via disulfide linkage to form hydrophilic and neutral corona. Therefore, we have demonstrated thiol‐selective PEG derivatives, endowed with unusual versatility, for practical use and potential exploitation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Rapid, selective and sensitive determination of N‐linked oligosaccharides in glycoproteins (ovalbumin, ribonuclease B and fetuin) was performed by ultra‐performance liquid chromatography (UPLC) with fluorescence (FL) and electrospray ionization time‐of‐flight mass spectrometry (ESI‐TOF‐MS). The asparaginyl‐oligosaccharide moiety was first liberated from each glycoprotein by pronase E (a proteolitic enzyme). The oligosaccharide fractions separated by gel‐permeation chromatography were labeled with 1‐pyrenesulfonyl chloride (PSC, a fluorescence reagent), separated by UPLC in a short run time, and then detected by FL and TOF‐MS. The PSC‐labeled oligosaccharides were selectively identified from the FL detection and then sensitively determined by ESI‐TOF‐MS. As the results, 15, eight and four kinds of N‐linked oligosaccharides were detected from ovalbumin, ribonuclease B and fetuin, respectively. Because the present method is rapid (within 9 min), selective and sensitive (approximate 60 fmol, S/N = 5), the determination of N‐linked oligosaccharides in various glycoproteins seems to be possible. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Peroxide and oxygen free radicals are some of the causes of oxidative stress in brain tissue, and could lead to the change of brain structure and function. In addition, oxidative damage is one of the most important causes of the aging of the vast majority of tissues. The aim of this study is to investigate the protective effect of timosaponin BII on oxidative stress damage of PC12 induced by H2O2 using metabolomics based on the UHPLC‐Q‐TOF‐MS technique. Partial least‐squares discriminant analysis method was used to identify 35 metabolites as decisive marker compounds in a preliminary interpretation of the mechanism of the antioxidative effect of timosaponin BII. The majority of these metabolites are involved in the glutathione metabolism, amino acid metabolism, sphingolipid and glycerophospholipid metabolism. Our results suggest that timosaponin BII demonstrates systematic antioxidant effects in the PC12 oxidative damage cell model via the regulation of multiple metabolic pathways. These findings provide insight into the pathophysiological mechanisms underlying oxidative stress damage and suggest innovative and effective treatments for this disorder, providing a reliable basis for the development of novel therapeutic target in timosaponin BII treatment of oxidative stress.  相似文献   

20.
Summary. We investigated the protective effects of L-carnitine against damage to the heart caused by diabetes-induced alterations and additional ischaemia and reperfusion in diabetic BB/OK rats using histological techniques, morphometry, biochemical parameters of oxidative stress, and SOD expression. The results revealed that diabetes-induced morphological changes were partly improved or nearly prevented by substitution of L-carnitine, which also seemed to improve the reduced tolerance of diabetic myocardium towards ischaemia/reperfusion with respect to morphological parameters. Immunohistochemical and biochemical parameters of oxidative stress such as SOD protein expression as well as SOD and GPx activity indicate increased free oxygen radical level in the ischaemic/reperfused diabetic myocardium, which is clearly decreased by L-carnitine treatment. We suggest that L-carnitine may be an adequate “causal” agent in the protection of myocardial alterations in diabetes with additional ischaemia and reperfusion, as it stabilizes mitochondrial and cellular function and acts through its antioxidative or radical scavenging potential. Further investigations are necessary to determine an approach towards adjuvant treatment of diabetic myocardial complications using L-carnitine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号