首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a simple, sensitive, and rapid detection of captopril using copper(II) and a bare glassy carbon electrode with cyclic voltammetry. The captopril is detected by the formation of a copper(II)‐captopril complex that is observed to have a characteristic oxidation potential at+0.24 V vs. Ag/AgCl. It is found that the peak current varies linearly with the concentration of captopril. The linear dynamic range is obtained for a captopril concentration of 1 µM to 10 µM, and the sensitivity is found to be 0.10±0.003 μA μM?1. Importantly, the low limit of detection (n=3) of 0.10 μM and the precision of 3.2 %, are achieved using a simple, unmodified electrode. This is attributable to in situ adsorption of a copper(II)‐captopril complex on the electrode surface.  相似文献   

2.
《Electroanalysis》2017,29(11):2572-2578
We report in this work, a new method for the determination of captopril by differential pulse voltammetry using a glassy carbon electrode modified with a copper metal‐organic framework (H‐Kust‐1 or Cu3(BTC)2 or Cu‐BTC), immobilized on the surface by a copolymer of acrylamide and sodium acrylate. This compound is detected by the formation of a copper(II)‐captopril complex that is observed in an oxidation potential at ca. +0.28 V vs . Ag/AgCl. A linear dynamic range is obtained for a captopril concentration of 0.5 μM to 7.0 μM and the voltammetric response is highly reproducible within 3.52 % error. The sensitivity of 9.71±0.37 nA μM−1 and the limit of detection of 0.20±0.01 μM make this methodology highly applicable for practical applications. The determination of captopril in a commercial pharmaceutical sample showed a recovery of 93.3 %.  相似文献   

3.
A carbon-paste electrode was modified with copper-cobalt hexacyanoferrate by consecutive potential cycling. The kinetic parameters were calculated for the electroactive species. The resulting electrode exhibited electrocatalytic activity towards the oxidation of captopril. The kinetics of the electrocatalytic reaction was studied. A linear relationship was observed between anodic current and the concentration of captopril in the range of 5.0 × 10?6–3.1 × 10?5 μM with a detection limit of 4.2 μM (S/N = 3). The modified electrode was used in the analysis of captopril tablets successfully.  相似文献   

4.
We report the application of an electrochemical sensor based on gold-copper metal-organic framework immobilized on the surface of a glassy carbon electrode to the detection of captopril (CAP), an angiotensin-converting enzyme inhibitor. Cyclic voltammetric studies showed that the joint action of gold nanoparticles and copper-1,3,5-benzenetricarboxylate (Cu−BTC) enhanced the electrochemical response to the Cu-captopril complex that is adsorbed onto the surface of the electrode. Release of gold nanoparticles from Au@Cu−BTC not only increased the conductivity of the electrode but also provided a more favorable environment for the deposition of reduced Cu that is catalytically renewed on the electrode surface. The anodic current of the Cu(II)−CAP oxidation peak varied linearly within two concentration ranges, namely 0.5 to 7.0 μmol L−1 and 10 to 2500 μmol L−1, with a limit of detection of 0.047 μmol L−1. The mean recovery for the determination of captopril in commercial tablets was 100.3 % suggesting that the method has considerable potential for future industrial applications.  相似文献   

5.
The O and N gas ions (O3+, O+, N2+, and N4+) were implanted on the glassy carbon surface employing the electron cyclotron resonance ion source, which were characterized using electrochemical and surface analysis methods. The modified electrode was examined for the catalytic oxidation of bioorganic molecules including dopamine, where the O+ ion implanted GC revealed the best catalytic performance. The XPS and Raman results represented that the ion implantation made enrichment in graphite nanocrystalline structure with edge plane, showing the enhanced electrochemical activity. It showed excellent performance for dopamine detection without significant interferences between 50.0 nM and 400.0 μM with the detection limit of 10.0±2.5 nM (95 % confidence level). The reliability of proposed electrode was evaluated by the real urine sample analysis.  相似文献   

6.
《Analytical letters》2012,45(6):1115-1127
Abstract

A flow‐injection procedure for detection of captopril using a Co2+‐captopril complex formed on line based enhancement of luminol and dissolved oxygen chemiluminescence is described. The chemiluminescence reagents, luminol and Co2+, were both immobilized on ion exchange resin in the flow injection system. When captopril solution flowed through the immobilized Co2+ column, the Co2+‐captopril (1:2) complex formed on line could greatly enhanced the chemiluminescence intensity generated from the reaction between luminol and dissolved oxygen. The increment of chemiluminescence emission was correlated with the captopril concentration in the range from 7 to 1000 pg mL?1, and the detection limit was 2 pg mL?1 (3σ). One analysis cycle, including sampling and washing, could be accomplished in 0.5 min with relative standard deviations of less than 3.0% (n=11). The proposed method was applied directly in the assay of human urine without any pretreatment and it was found that the captopril concentration reached its maximum after being administrated orally for 1.5 hours, with the mean excretion ratio in 6.5 hours of 54.3% in the body of volunteers. The possible chemiluminescence mechanism was discussed.  相似文献   

7.
In this study, we performed the first comparative study of the antibacterial mechanisms of silver ion (Ag+) and silver nanoparticles (AgNPs) on Escherichia coli (E. coli) using Fourier transform infrared (FTIR) spectroscopy. Through a thorough analysis of the FTIR spectra of E. coli after silver treatment in the spectral regions corresponding to thiol group, protein, lipopolysaccharide (LPS), and DNA, we were able to reveal a multifaceted antibacterial mechanism of silver at the molecular level for both Ag+ and AgNPs. Features of such mechanism include: (1) silver complexes with thiol group; (2) silver induces protein misfolding; (3) silver causes loss of LPS from bacterial membrane; (4) silver changes the overall conformation of DNA. Despite the similarities between Ag+ and AgNPs with respect to their antibacterial mechanisms, we further revealed that Ag+ and AgNPs display quite different kinetics for silver-thiol complexation and loss of LPS, with Ag+ displaying fast kinetics and AgNPs displaying slow kinetics. At last, we proposed a hypothesis to interpret the observed different behaviors between Ag+ and AgNPs when interacting with E. coli.  相似文献   

8.
2‐chlorobenzoyl ferrocene, was synthesized and used to construct a modified ZnO‐CuO nanoplates modified carbon paste electrode. The electrooxidation of captopril at the surface of the modified electrode was studied. Under the optimized conditions, the square wave voltammetric (SWV) peak current of captopril increased linearly with captopril concentration in the range of 5.0×10?7 to 9.0×10?4 M and detection limit of 90.0 nM was obtained for captopril. The diffusion coefficient and kinetic parameters (such as electron transfer coefficient and the heterogeneous rate constant) for captopril oxidation were also determined. The prepared modified electrode exhibits a very good resolution between the voltammetric peaks of captopril and tryptophan which makes it suitable for the detection of captopril in the presence of tryptophan in real samples.  相似文献   

9.
Three simple, selective and cost-effective procedures for the determination of captopril in bulk drug and in tablets are described. All the procedures make use of silver nitrate as a reagent and involve titrimetry and spectrophotometry as measurement techniques. In titrimetry (Method A), the aqueous solution of the drug is titrated directly with the standard silver nitrate solution to a potassium chromate end-point. In one spectrophotometric method (Method B), the sample solution is treated with excess of silver nitrate and a known amount of methyl orange and the increase in absorbance at 520 nm, caused by a decrease in pH due to release of nitric acid, is measured and related to drug concentration. The other spectrophotometric method (Method C) involves the addition of a measured excess of silver nitrate to the sample solution followed by the determination of residual silver ion by an ion-associate complex formation reaction involving eosin and 1,10-phenanthroline. The decrease in absorbance at 550 nm, which corresponds to Ag+ reacted with the drug, is measured and is found to be linearly related to drug concentration. All experimental variables involved in the methods were investigated and optimized. Stoichiometry of the reaction that forms the basis for titrimetry is found. Method A is applicable in the range of 1.0–20.0 mg of drug while methods B and C can be conveniently used in the concentration ranges of 2.5–50.0 and 0.25–4.0 μg ml?1, respectively. Several optical characteristics such as molar absorptivity, Sandell sensitivity, limits of detection and quantification, and correlation coefficient were calculated. The methods were applied to the analysis of tablets containing captopril. Statistical treatment of the results indicates that the procedures are precise and accurate. The excipients used as additives in tablets did not interfere in the proposed procedures as revealed by the recovery studies.  相似文献   

10.
In this study, a facile, efficient, and surfactant‐free method to synthesize silica nanosphere‐supported ultrafine silver nanoparticles (AgNPs) (~2.5 nm) was developed, and their antibacterial effects were investigated. In the synthesis process, the hydrolysis of 3‐mercaptopropyltrimethoxysilane was adopted to provide thiol groups and in situ reduce Ag+ to Ag0 for ultrafine AgNPs formation on the surface of the silica nanosphere. Electron microscopy characterization of the complex formed revealed that the ultrafine AgNPs were not agglomerated and grow without any surfactants because there were no excess electrons transported from the shell to reduce the silver ions to silver atoms. The antibacterial effects of the supported ultrafine AgNPs with the surfactant‐free surface were evaluated against the Escherichia coli even at very low dosage. After incubation with 20 μg/mL silica‐supported AgNPs up to 120 min, 99.7% of the E. coli were inactivated, according to the bacterial viability measured by flow cytometry.  相似文献   

11.
A DNA‐based biosensor was reported for detection of silver ions (Ag+) by electrochemical impedance spectroscopy (EIS) with [Fe(CN)6]4?/3? as redox probe and hybridization chain reaction (HCR) induced hemin/G‐quadruplex nanowire as enhanced label. In the present of target Ag+, Ag+ interacted with cytosine‐cytosine (C? C) mismatch to form the stable C? Ag+? C complex with the aim of immobilizing the primer DNA on electrode, which thus triggered the HCR to form inert hemin/G‐quadruplex nanowire with an amplified EIS signal. As a result, the DNA biosensor showed a high sensitivity with the concentration range spanning from 0.1 nM to 100 µM and a detection limit of 0.05 nM.  相似文献   

12.
A novel application of fluorine‐doped tin oxide (FTO) electrodes is reported in the present work. To this end, the captopril electrochemical oxidation mechanism on FTO electrodes at various pH and its determination in pharmaceutical preparations was investigated. Captopril oxidation on FTO proceeds at pH between 2.0 and 4.0. The study revealed that interferences for captopril determination in pharmaceutical samples was totally suppressed using these electrode materials. Voltammetric survey showed an anodic peak at about 0.375 V (Ag|AgCl) for captopril oxidation, that takes place through an EC process at pH interval 2.0–4.0. The investigation demonstrated that captopril oxidation occurs through protonated species and these electroactive species interact by adsorption on FTO electrodes, with a large heterogeneous rate constant and a mechanism involving 1H+/1e? in the global reaction. Moreover, a captopril sensor based upon FTO electrodes, with a linear range miliMolar, is proposed. These electrodes are promising candidates for the efficient electrochemical determination of captopril in pharmaceutical preparations.  相似文献   

13.
A sensitive electrochemical method for the detection of DNA hybridization based on the probe labeled with multiwall carbon‐nanotubes (MWNTs) loaded with silver nanoparticles (Ag‐MWNTs) has been developed. MWNTs were electroless‐plated with a large number of silver nanoparticles to form Ag‐MWNTs. Probe single strand DNA (ss‐DNA) with a thiol group at the 3′‐terminal labeled with Ag‐MWNTs by self‐assembled monolayer (SAM) technique was employed as an electrochemical probe. Target ss‐DNA with a thiol group was immobilized on a gold electrode by SAM technique and then hybridized with the electrochemical probe. Binding events were monitored by differential pulse voltammetric (DPV) signal of silver nanoparticles. The signal difference permitted to distinguish the match of two perfectly complementary DNA strands from the near perfect match where just three base pairs were mismatched. There was a linear relation between the peak current at +120 mV (vs. SCE) and complementary target ss‐DNA concentration over the range from 3.1×10?14 to 1.0×10?11 mol/L with a detection limit of 10 fmol/L of complementary target ss‐DNA. The proposed method has been successfully applied to detection of the DNA sequence related to cystic fibrosis. This work demonstrated that the MWNTs loaded with silver nanoparticles offers a great promising approach for sensitive detection of DNA hybridization.  相似文献   

14.
《中国化学会会志》2018,65(5):591-596
We demonstrate that silica microspheres can act as a sensitive fluorescent sensor and adsorbent of Ag+ in aqueous media. These thiol‐functionalized silica microspheres are doped with quantum dots (QDs) using organosilane chemistry in a one‐step preparation. Ligand exchange takes place between the thiolated organosilane and acid‐capped QDs, making the doping easy. Ag+ adsorption by the silica microspheres causes the decrease of fluorescence intensity of the QDs. The detection limit for Ag+ is found to be 10 μmol/L. The abundance of thiol groups on the surface of the microspheres could effectively remove Ag+ through strong interaction. When microspheres with a diameter of 1.1 μm are used as the adsorbents, the adsorption capacity for Ag+ reached 102 mg/g. This excellent adsorption ability is due to the abundance of thiol groups that act as the active sites, facilitating the adsorption of the massive metal ions on the surface of the microspheres. Furthermore, the adsorption isotherm data follows the Freundlich model. The structure and content of the silica microspheres were investigated by scanning and high‐resolution transmission electron microscopy, energy dispersive X‐ray spectroscopy, and Raman analysis, and the fluorescence properties were characterized by fluorescence microscopy.  相似文献   

15.
We prepared and characterized electrocatalysts based on multiwalled carbon nanotubes (MWCNTs) coated with methylene green (MG). These electrocatalysts can regenerate nicotinamide adenine dinucleotide (NAD+), so they are potentially applicable in the field of bioelectronics. NADH oxidation occurs between 0.14±0.002 and 0.16±0.002 V vs. Ag/AgCl. The most efficient bioanode furnishes 88±7 µW cm?2 and 500 µA cm?2 and an open circuit voltage of 590±22 mV. In conclusion, we obtained a reliable and easy‐to‐prepare electrocatalyst that can regenerate NAD+ and may be applicable in biosensors and bioelectronic devices that use a wide range of NAD+‐dependent enzymes.  相似文献   

16.
A sensitive method for determination of free captopril as monobromobimane derivative in plasma samples is discussed. The internal standard (IS) was 5‐methoxy‐1H‐benzimidazole‐2‐thiol. Derivatization with monobromobimane immediately after blood collection and plasma preparation prevents oxidation of captopril to the corresponding disulfide compound and enhances the ionization yield. Consequently, derivatization enhances sample stability and detection sensitivity. Addition of the internal standard was made immediately after plasma preparation. The internal standard was also derivatized by monobromobimane, as it contains a thiol functional group. Preparation of plasma samples containing captopril and IS derivatives was based upon protein precipitation through addition of acetonitrile, in a volumetric ratio 1:2. The reversed‐phase liquid chromatographic separation was achieved on a rapid resolution cartridge Zorbax SB‐C18, monitored through positive electrospray ionization and tandem MS detection using the multiple‐reaction monitoring mode. Transitions were 408–362 amu for the captopril derivative and 371–260 amu for the internal standard derivative. The kinetics of captopril oxidation to the corresponding disulfide compound in plasma matrix was also studied using the proposed method. A linear log–log calibration was obtained over the concentration interval 2.5–750 ng/mL. A low limit of quantitation in the 2.5 ng/mL range was obtained. The analytical method was fully validated and successfully applied in a three‐way, three‐period, single‐dose (50 mg), block‐randomized bioequivalence study for two pharmaceutical formulations (captopril LPH 25 and 50 mg) against the comparator Capoten 50 mg. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
We report the first measurement of the polarization of thermal muonium in vacuum. A 20 MeV/c beam of μ+ was stopped in a layer of SiO2 powder which emitted (17±1)% of the stopped μ+ into vacuum as thermal muonium. The muonium Larmor precession was observed in a transverse magnetic field of 1.4 G, and the measured amplitude of the precession signal indicates that the μ+ polarization in the muonium is (39±9)%.  相似文献   

18.
A new chromogenic reagent, 2‐(2‐quinolylazo)‐5‐dimethylaminoaniline (QADMAA) was synthesized. A highly sensitive, selective and rapid method for the determination of silver based on the rapid reaction of silver(I) with QADMAA was developed. In the presence of pH = 6.5 sodium citrate‐sodium hydroxide buffer solution and sodium dodecyl sulfonate (SDS) medium, QADMAA reacts with silver to form a violet complex of a molar ratio 1:2 (silver to QADMAA). The molar absorptivity of the complex is 1.26 × 105 L. mol?1.cm?1 at 570 nm. Beer's law is obeyed in the range of 0.01–0.6 μg/mL. The relative standard deviation for eleven replicate samples of 0.2 μg/mL silver is 1.76%. This method was applied to the determination of silver in water with good results.  相似文献   

19.
Liu X  Li W  Shen Q  Nie Z  Guo M  Han Y  Liu W  Yao S 《Talanta》2011,85(3):1603-1608
The heavy metal ions-nucleobases interaction is an important research topic in environmental and biochemical analysis. The presence of the silver ion (Ag+) may influence the formation of oxidation intermediate and the electrocatalytic oxidation activity of guanine (G), since Ag+ can interact with guanine at the binding sites which are involved in the electrocatalytic oxidation reaction of guanine. According to this principle, a new electrochemical sensor for indirectly detecting Ag+ based on the interaction of Ag+ with isolated guanine base using differential pulse voltammetry (DPV) was constructed. Among the heavy metal ions examined, only Ag+ showed the strongest inhibitory effect on the electrocatalytic oxidation of guanine at the multi-walled carbon nanotubes modified glassy carbon electrode (CNTs/GC). And the quantitative study of Ag+ based on Ag+-G sensing system gave a linear range from 100 nM to 2.5 μM with a detection limit of 30 nM. In addition, this modified electrode had very good reproducibility and stability. The developed electrochemical method is an ideal tool for Ag+ detection with some merits including remarkable simplicity, low-cost, and no requirement for probe preparation.  相似文献   

20.
A simple, rapid and sensitive cyclic voltammetry method is described for the determination of the antihypertensive drug captopril in aqueous solution using a graphite paste electrode with rutin as mediator. The catalytic role of rutin in the oxidation of captopril was confirmed by the increase observed in anodic peak current at+0.44 V vs. SCE in the presence of the mediator. Anodic peak current varied linearly with the concentration of captopril in the dynamic range 0.2 to 1.0 mmol L?1. The method exhibited a limit of detection of 89.4 μmol L?1 and a reproducibility of 1 %, values that are comparable with those exhibited by other methodologies employing electrodes without any modification. The recovery rate for the determination of captopril in a pharmaceutical sample was good (91.21 %) suggesting that the described analytical technique would be effective in industrial applications whilst offering a number of advantages over published cyclic voltammetric methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号