首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is growing interest in developing additional DNA typing techniques to provide better investigative leads in forensic analysis. These include inference of genetic ancestry and prediction of common physical characteristics of DNA donors. To date, forensic ancestry analysis has centered on population‐divergent SNPs but these binary loci cannot reliably detect DNA mixtures, common in forensic samples. Furthermore, STR genotypes, forming the principal DNA profiling system, are not routinely combined with forensic SNPs to strengthen frequency data available for ancestry inference. We report development of a 12‐STR multiplex composed of ancestry informative marker STRs (AIM‐STRs) selected from 434 tetranucleotide repeat loci. We adapted our online Bayesian classifier for AIM‐SNPs: Snipper, to handle multiallele STR data using frequency‐based training sets. We assessed the ability of the 12‐plex AIM‐STRs to differentiate CEPH Human Genome Diversity Panel populations, plus their informativeness combined with established forensic STRs and AIM‐SNPs. We found combining STRs and SNPs improves the success rate of ancestry assignments while providing a reliable mixture detection system lacking from SNP analysis alone. As the 12 STRs generally show a broad range of alleles in all populations, they provide highly informative supplementary STRs for extended relationship testing and identification of missing persons with incomplete reference pedigrees. Lastly, mixed marker approaches (combining STRs with binary loci) for simple ancestry inference tests beyond forensic analysis bring advantages and we discuss the genotyping options available.  相似文献   

2.
Microfluidic technology has been utilized in the development of a modular system for DNA identification through STR (short tandem repeat) analysis, reducing the total analysis time from the ∼6 h required with conventional approaches to less than 3 h. Results demonstrate the utilization of microfluidic devices for the purification, amplification, separation and detection of 9 loci associated with a commercially-available miniSTR amplification kit commonly used in the forensic community. First, DNA from buccal swabs purified in a microdevice was proven amplifiable for the 9 miniSTR loci via infrared (IR)-mediated PCR (polymerase chain reaction) on a microdevice. Microchip electrophoresis (ME) was then demonstrated as an effective method for the separation and detection of the chip-purified and chip-amplified DNA with results equivalent to those obtained using conventional separation methods on an ABI 310 Genetic Analyzer. The 3-chip system presented here demonstrates development of a modular, microfluidic system for STR analysis, allowing for user-discretion as to how to proceed after each process during the analysis of forensic casework samples.  相似文献   

3.
《Electrophoresis》2018,39(12):1466-1473
Massively parallel sequencing (MPS) technologies, also termed as next‐generation sequencing (NGS), are becoming increasingly popular in study of short tandem repeats (STR). However, current library preparation methods are usually based on ligation or two‐round PCR that requires more steps, making it time‐consuming (about 2 days), laborious and expensive. In this study, a 16‐plex STR typing system was designed with fusion primer strategy based on the Ion Torrent S5 XL platform which could effectively resolve the above challenges for forensic DNA database‐type samples (bloodstains, saliva stains, etc.). The efficiency of this system was tested in 253 Han Chinese participants. The libraries were prepared without DNA isolation and adapter ligation, and the whole process only required approximately 5 h. The proportion of thoroughly genotyped samples in which all the 16 loci were successfully genotyped was 86% (220/256). Of the samples, 99.7% showed 100% concordance between NGS‐based STR typing and capillary electrophoresis (CE)‐based STR typing. The inconsistency might have been caused by off‐ladder alleles and mutations in primer binding sites. Overall, this panel enabled the large‐scale genotyping of the DNA samples with controlled quality and quantity because it is a simple, operation‐friendly process flow that saves labor, time and costs.  相似文献   

4.
This work describes the development of a novel microdevice for forensic DNA processing of reference swabs. This microdevice incorporates an enzyme‐based assay for DNA preparation, which allows for faster processing times and reduced sample handling. Infrared‐mediated PCR (IR‐PCR) is used for STR amplification using a custom reaction mixture, allowing for amplification of STR loci in 45 min while circumventing the limitations of traditional block thermocyclers. Uniquely positioned valves coupled with a simple rotational platform are used to exert fluidic control, eliminating the need for bulky external equipment. All microdevices were fabricated using laser ablation and thermal bonding of PMMA layers. Using this microdevice, the enzyme‐mediated DNA liberation module produced DNA yields similar to or higher than those produced using the traditional (tube‐based) protocol. Initial microdevice IR‐PCR experiments to test the amplification module and reaction (using Phusion Flash/SpeedSTAR) generated near‐full profiles that suffered from interlocus peak imbalance and poor adenylation (significant ?A). However, subsequent attempts using KAPA 2G and Pfu Ultra polymerases generated full STR profiles with improved interlocus balance and the expected adenylated product. A fully integrated run designed to test microfluidic control successfully generated CE‐ready STR amplicons in less than 2 h (<1 h of hands‐on time). Using this approach, high‐quality STR profiles were developed that were consistent with those produced using conventional DNA purification and STR amplification methods. This method is a smaller, more elegant solution than current microdevice methods and offers a cheaper, hands‐free, closed‐system alternative to traditional forensic methods.  相似文献   

5.
《Electrophoresis》2017,38(6):846-854
This study assesses the performance of Illumina's MiSeq FGx System for forensic genomics by systematically analyzing single source samples, evaluating concordance, sensitivity and repeatability, as well as describing the quality of the reported outcomes. DNA from 16 individuals (9 males/7 females) in nine separate runs showed consistent STR profiles at DNA input ≥400 pg, and two full profiles were obtained with 50 pg DNA input. However, this study revealed that the outcome of a single sample does not merely depend on its DNA input but is also influenced by the total amount of DNA loaded onto the flow cell from all samples. Stutter and sequence or amplification errors can make the identification of true alleles difficult, particularly for heterozygous loci that show allele imbalance. Sequencing of 16 individuals’ STRs revealed genetic variations at 14 loci at frequencies suggesting improvement of mixture deconvolution. The STR loci D1S1656 and DXS10103 were most susceptible to drop outs, and D22S1045 and DYS385a‐b showed heterozygote imbalance.  Most stutters were typed at TH01 and DYS385a‐b, while amplification or sequencing errors were observed mostly at D7S820 and D19S433. Overall, Illumina's MiSeq FGx System produced reliable and repeatable results.  aSTRs showed fewer drop outs than the Y‐ and X‐STRs.  相似文献   

6.
Whole-genome DNA amplification (WGA) is a promising method that generates large amounts of DNA from samples of limited quantity. We investigated the accuracy of a multiplex PCR approach to WGA over STR loci. The amplification bias within a locus and over all analyzed loci was investigated in relation to the amount of template in the WGA reaction, the specific STR locus, and allele length. We observed reproducible error-free STR profiles with 10 ng down to 1 ng of DNA template. The amplification deviation at a locus and between loci was within the intra-method reproducibility. WGA is the method of choice for amplifying nanogram amounts of genomic DNA for different applications. We detected unbalanced STR amplifications at one locus and between loci, allelic drop-outs, and additional alleles after WGA of low-copy-number DNA. We found that the high number of drop-outs and drop-ins could be eradicated using pooled DNA from separate WGA reactions even with as little as 100 pg of starting template. Nevertheless, the quality of the results was still not sufficient for use in routine chimerism analysis of limited specific cell populations after allogeneic stem cell transplantation.  相似文献   

7.
A new multiplex system for six tetranucleotide short tandem repeat (STR) loci was devised based on multicolor dye technology. Six loci (D20S480, D6S2439, D6S1056, D9S1118, D4S2639, and D17S1290), each with high discriminating power (each unbiased estimates of expected heterozygosity, Exp. Hz, > 0.80 in a preliminary test), were selected from more than 100 tetranucleotide STRs included in a commercially available primer set. These loci were also selected so as not to link with general STRs in commercially released kits including the combined DNA index system (CODIS) 13 core STRs. The primers were newly designed in the present study, in which each amplicon size had a range of less than 200 base pairs (bp), in order to genotype from highly degraded template DNA. Using this system, we genotyped 270 Honshu (mainland)-Japanese and 187 Okinawa-Japanese. From these allele frequencies, we performed three tests, a homozygosity test, a likelihood ratio test and an exact test for Hardy-Weinberg equilibrium (HWE), and no significant deviations (p < 0.05) from HWE were observed. We also compared the allele distributions at six STRs between both populations, and they were significantly different (p < 0.05) at three loci (D6S2439, D9S1118 and D4S2639). Furthermore, the Exp. Hz and the power of discrimination (PD) at all loci in the Honshu-Japanese population were higher than 0.80 and 0.93, respectively. These statistical values for discriminating power in the Honshu-Japanese were almost the same as in the Okinawa-Japanese. This novel, multiplex polymerase chain reaction (PCR) amplification and typing system for six STR loci thus promises to be a convenient and informative new DNA profiling system in the forensic field.  相似文献   

8.
Although the analysis of length polymorphism at STR loci has become a method of choice for grape cultivar identification, the standardization of methods for this purpose lags behind that of methods for DNA profiling in human and animal forensic genetics. The aim of this study was thus to design and validate a grapevine STR protocol with a practically useful level of multiplexing. Using free bioinformatics tools, published primer sequences, and nucleotide databases, we constructed and optimized a primer set for the simultaneous analysis of six STR loci (VVIi51, scu08vv, scu05vv, VVMD17, VrZAG47, and VrZAG83) by multiplex PCR and CE with laser‐induced fluorescence, and tested it on 90 grape cultivars. The new protocol requires subnanogram quantities of the DNA template and enables automated, high‐throughput genetic analysis with reasonable discriminatory power. As such, it represents a step toward further standardization of grape DNA profiling.  相似文献   

9.
《Electrophoresis》2017,38(7):1016-1021
A Y‐STR multiplex system has been developed with the purpose of complementing the widely used 17 Y‐STR haplotyping (AmpFlSTR Y Filer® PCR Amplification kit) routinely employed in forensic and population genetic studies. This new multiplex system includes six additional STR loci (DYS576, DYS481, DYS549, DYS533, DYS570, and DYS643) to reach the 23 Y‐STR of the PowerPlex® Y23 System. In addition, this kit includes the DYS456 and DYS385 loci for traceability purposes. Male samples from 625 individuals from ten worldwide populations were genotyped, including three sample sets from populations previously published with the 17 Y‐STR system to expand their current data. Validation studies demonstrated good performance of the panel set in terms of concordance, sensitivity, and stability in the presence of inhibitors and artificially degraded DNA. The results obtained for haplotype diversity and discrimination capacity with this multiplex system were considerably high, providing further evidences of the suitability of this novel Y‐STR system for forensic purposes. Thus, the use of this multiplex for samples previously genotyped with 17 Y‐STRs will be an efficient and low‐cost alternative to complete the set of 23 Y‐STRs and improve allele databases for population and forensic purposes.  相似文献   

10.
We evaluate the usefulness of a commercially available microchip CE (MCE) device in different genetic identification studies performed with mitochondrial DNA (mtDNA) targets, including the haplotype analysis of HVR1 and HVR2 and the study of interspecies diversity of cytochrome b (Cyt b) and 16S ribosomal RNA (16S rRNA) mitochondrial genes in forensic and ancient DNA samples. The MCE commercial system tested in this study proved to be a fast and sensitive detection method of length heteroplasmy in cytosine stretches produced by 16 189T>C transitions in HVR1 and by 309.1 and 309.2 C-insertions in HVR2. Moreover, the quantitative analysis of PCR amplicons performed by LIF allowed normalizing the amplicon input in the sequencing reactions, improving the overall quality of sequence data. These quantitative data in combination with the quantification of genomic mtDNA by real-time PCR has been successfully used to evaluate the PCR efficiency and detection limit of full sequencing methods of different mtDNA targets. The quantification of amplicons also provided a method for the rapid evaluation of PCR efficiency of multiplex-PCR versus singleplex-PCR to amplify short HV1 amplicons (around 100 bp) from severely degraded ancient DNA samples. The combination of human-specific (Cyt b) and universal (16S rRNA) mtDNA primer sets in a single PCR reaction followed by MCE detection offers a very rapid and simple screening test to differentiate between human and nonhuman hair forensic samples. This method was also very efficient with degraded DNA templates from forensic hair and bone samples, because of its applicability to detect small amplicon sizes. Future possibilities of MCE in forensic DNA typing, including nuclear STRs and SNP profiling are suggested.  相似文献   

11.
Short tandem repeats (STRs), known as microsatellites, are one of the most informative genetic markers for characterizing biological materials. Because of the relatively small size of STR alleles (generally 100-350 nucleotides), amplification by polymerase chain reaction (PCR) is relatively easy, affording a high sensitivity of detection. In addition, STR loci can be amplified simultaneously in a multiplex PCR. Thus, substantial information can be obtained in a single analysis with the benefits of using less template DNA, reducing labor, and reducing the contamination. We investigated 14 STR loci in a Japanese population living in Sendai by three multiplex PCR kits, GenePrint PowerPlex 1.1 and 2.2. Fluorescent STR System (Promega, Madison, WI, USA) and AmpF/STR Profiler (Perkin-Elmer, Norwalk, CT, USA). Genomic DNA was extracted using sodium dodecyl sulfate (SDS) proteinase K or Chelex 100 treatment followed by the phenol/chloroform extraction. PCR was performed according to the manufacturer's protocols. Electrophoresis was carried out on an ABI 377 sequencer and the alleles were determined by GeneScan 2.0.2 software (Perkin-Elmer). In 14 STRs loci, statistical parameters indicated a relatively high rate, and no significant deviation from Hardy-Weinberg equilibrium was detected. We apply this STR system to paternity testing and forensic casework, e.g., personal identification in rape cases. This system is an effective tool in the forensic sciences to obtain information on individual identification.  相似文献   

12.
This study reports the methodology used to search, select and characterize STR loci on the canine X chromosome using publicly available genome resources and following the current guidelines for human and non‐human forensic testing. After several rounds of selection, 12 X‐STR markers were optimized for simultaneous co‐amplification in a single PCR, and genetic profiles were determined in a sample of 103 unrelated dogs. Mendelian inheritance was verified and mutation rates were assessed using family groups. Alleles that varied in size were sequenced to create a standardized nomenclature proposal based on the number of repeats. All loci conformed to Hardy–Weinberg expectations. The resulting panel showed high forensic efficiency, presenting high values of power of discrimination (in males and females) and mean exclusion chance, both in trios involving female offspring and in duos composed of dam and male offspring. Its use may complement the information obtained by autosomal STR analysis and contribute to the resolution of complex cases of kinship in dogs. The presented methodology for the de novo construction of an STR multiplex may also provide a helpful framework for analogous work in other animal species. As an increasing number of reference genomes become available, convenient tools for individual identification and parentage testing based on STR loci selected from autosomes or sex chromosomes' sequences may be created following this strategy.  相似文献   

13.
Quantification of DNA in a forensic sample is of major importance for proper DNA amplification and STR profiling. Several methods have been developed to quantify DNA, from basic UV spectrometry, through gel-based techniques, to dye staining, blotting techniques, and, very recently, DNA amplification methods (polymerase chain reaction, PCR). Early techniques simply measured total DNA, but newer techniques can specifically measure human DNA while excluding non-human DNA (foodstuff, animal, or bacterial contamination). These newer assays can be faster and less expensive than traditional methods, making them ideal for the busy forensic laboratory. This paper reviews classic and newer quantification techniques and presents methods recently developed by the authors on the basis of PCR of Alu sequences.  相似文献   

14.
A valveless microdevice has been developed for the integration of solid phase extraction (SPE) and polymerase chain reaction (PCR) on a single chip for the short tandem repeat (STR) analysis of DNA from a biological sample. The device consists of two domains--a SPE domain filled with silica beads as a solid phase and a PCR domain with an ~500 nL reaction chamber. DNA from buccal swabs was purified and amplified using the integrated device and a full STR profile (16 loci) resulted. The 16 loci Identifiler? multiplex amplification was performed using a non-contact infrared (IR)-mediated PCR system built in-house, after syringe-driven SPE, providing an ~80-fold and 2.2-fold reduction in sample and reagent volumes consumed, respectively, as well as an ~5-fold reduction in the overall analysis time in comparison to conventional analysis. Results indicate that the SPE-PCR system can be used for many applications requiring genetic analysis, and the future addition of microchip electrophoresis (ME) to the system would allow for the complete processing of biological samples for forensic STR analysis on a single microdevice.  相似文献   

15.
Forensic DNA samples can degrade easily due to exposure to light and moisture at the crime scene. In addition, the amount of DNA acquired at a criminal site is inherently limited. This limited amount of human DNA has to be quantified accurately after the process of DNA extraction. The accurately quantified extracted genomic DNA is then used as a DNA template in polymerase chain reaction (PCR) amplification for short tandem repeat (STR) human identification. Accordingly, highly sensitive and human-specific quantification of forensic DNA samples is an essential issue in forensic study. In this work, a quantum dot (Qdot)-labeled Alu sequence was developed as a probe to simultaneously satisfy both the high sensitivity and human genome selectivity for quantification of forensic DNA samples. This probe provided PCR-free determination of human genomic DNA and had a 2.5-femtogram detection limit due to the strong emission and photostability of the Qdot. The Qdot-labeled Alu sequence has been used successfully to assess 18 different forensic DNA samples for STR human identification.  相似文献   

16.
A fully integrated microdevice and process for forensic short tandem repeat (STR) analysis has been developed that includes sequence-specific DNA template purification, polymerase chain reaction (PCR), post-PCR cleanup and inline injection, and capillary electrophoresis (CE). Fragmented genomic DNA is hybridized with biotin-labeled capture oligos and pumped through a fluidized bed of magnetically immobilized streptavidin-coated beads in microchannels where the target DNA is bound to the beads. The bead-DNA conjugates are then transferred into a 250 nL PCR reactor for autosomal STR amplification using one biotin and one fluorescence-labeled primer. The resulting biotin-labeled PCR products are electrophoretically injected through a streptavidin-modified capture gel where they are captured to form a concentrated and purified injection plug. The thermally released sample plug is injected into a 14 cm long CE column for fragment separation and detection. The DNA template capture efficiency provided by the on-chip sequence-specific template purification is determined to be 5.4% using K562 standard DNA. This system can produce full 9-plex STR profiles from 2.5 ng input standard DNA and obtain STR profiles from oral swabs in about 3 hours. This fully integrated microsystem with sample-in-answer-out capability is a significant advance in the development of rapid, sensitive, and reliable micro-total analysis systems for on-site human identification.  相似文献   

17.
In the present study, 24 Y‐chromosomal short tandem repeat (Y‐STR) loci were analyzed in 115 unrelated Hui male individuals from Haiyuan county or Tongxin county, Ningxia Hui Autonomous Region, China, to evaluate the forensic application of the 24 STR loci and to analyze interpopulation differentiations by making comparisons between the Hui group data and previously published data of other 13 populations. A total of 115 different haplotypes were observed on these 24 Y‐STR loci. The gene diversities ranged from 0.4049 (DYS437) to 0.9729 (DYS385a, b). The overall haplotype diversity was 1 at AGCU 24 Y‐STR loci level, while the values were reduced to 0.999237, 0.996949, and 0.996644 at the Y‐filer 17 loci, 11 Y‐STR loci of extended haplotype and 9 Y‐STR loci of minimal haplotype levels, respectively; whereas, haplotype diversity for additional 7 loci (not included in Y‐filer 17 loci) was 0.995271. The pairwise FST, multidimensional scaling plot and neighbor‐joining tree indicated the Hui group had the closest genetic relationship with Sala in the paternal lineage in the present study. In summary, the results in our study indicated the 24 Y‐STRs had a high level of polymorphism in Hui group and hence could be a powerful tool for forensic application and population genetic study.  相似文献   

18.
MiniSTR loci have been demonstrated to be an effective approach in recovering genetic information from degraded specimens, because of the reduced PCR amplicon sizes which improved the PCR efficiency. Eight non‐combined DNA index system miniSTR loci suitable for the Chinese Han Population were analyzed in 300 unrelated Chinese Han individuals using two novel five fluorescence‐labeled miniSTR multiplex systems(multiplex I: D10S1248, D2S441, D1S1677 and D9S2157; multiplex II: D9S1122, D10S1435, D12ATA63, D2S1776 and Amelogenin). The allele frequency distribution and forensic parameters in the Chinese Han Population were reported in this article. The Exact Test demonstrated that all loci surveyed here were found to be no deviation from Hardy–Weinberg equilibrium. The accumulated power of discrimination and power of exclusion for the eight loci were 0.999999992 and 0.98, respectively. The highly degraded DNA from artificially degraded samples and the degraded forensic case work samples was assessed with the two miniSTR multiplex systems, and the results showed that the systems were quite effective.  相似文献   

19.
Wang J  McCord B 《Electrophoresis》2011,32(13):1631-1638
A common problem in the analysis of forensic DNA evidence is the presence of environmentally degraded and inhibited DNA. Such samples produce a variety of interpretational problems such as allele imbalance, allele dropout and sequence specific inhibition. In an attempt to develop methods to enhance the recovery of this type of evidence, magnetic bead hybridization has been applied to extract and preconcentrate DNA sequences containing short tandem repeat (STR) alleles of interest. In this work, genomic DNA was fragmented by heating, and sequences associated with STR alleles were selectively hybridized to allele-specific biotinylated probes. Each particular biotinylated probe-DNA complex was bound to streptavidin-coated magnetic beads using enabling enrichment of target DNA sequences. Experiments conducted using degraded DNA samples, as well as samples containing a large concentration of inhibitory substances, showed good specificity and recovery of missing alleles. Based on the favorable results obtained with these specific probes, this method should prove useful as a tool to improve the recovery of alleles from degraded and inhibited DNA samples.  相似文献   

20.
We have developed a novel STR 25‐plex florescence multiplex‐STR kit (DNATyper25) to genotype 23 autosomal and two sex‐linked loci for forensic applications and paternity analysis. Of the 23 autosomal loci, 20 are non‐CODIS. The sex‐linked markers include a Y‐STR locus (DYS391) and the Amelogenin gene. We present developmental validation studies to show that the DNATyper25 kit is reproducible, accurate, sensitive, and robust. Sensitivity testing showed that full profiles were achieved with as low as 125 pg of human DNA. Specificity testing demonstrated a lack of cross reactivity with a variety of commonly encountered non‐human DNA contaminants. Stability testing showed that full profiles were obtained with humic acid concentration ≤60 ng/μL and hematin concentration <400 μM. For forensic evaluation, the 23 autosomal STRs followed the Hardy–Weinberg equilibrium. In an analysis of 509 Chinese (CN) Hans, we detected a combined total of 181 alleles at the 23 autosomal STR loci. Since these autosomal STRs are independent from one another, PM was 8.4528 × 10?22, TDP was 0.999 999 999 999 999 999 999, CEP was 0.999 999 8395. The forensic efficiency parameters demonstrated that these autosomal STRs are highly polymorphic and informative in the Han population of China. We performed population comparisons and showed that the Northern CN Han has a close genetic relationship with the Luzhou Han, Tujia, and Bai populations. We propose that the DNATyper25 kit will be useful for cases where paternity analysis is difficult and for situations where DNA samples are limited in quantity and low in quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号