首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gap detection and masking in hearing-impaired and normal-hearing subjects   总被引:7,自引:0,他引:7  
Subjects with cochlear impairments often show reduced temporal resolution as measured in gap-detection tasks. The primary goals of these experiments were: to assess the extent to which the enlarged gap thresholds can be explained by elevations in absolute threshold; and to determine whether the large gap thresholds can be explained by the same processes that lead to a slower-than-normal recovery from forward masking. In experiment I gap thresholds were measured for nine unilaterally and eight bilaterally impaired subjects, using bandlimited noise stimuli centered at 0.5, 1.0, and 2.0 kHz. Gap thresholds were usually larger for the impaired ears, even when the comparisons were made at equal sensation levels (SLs). Gap thresholds tended to increase with increasing absolute threshold, but the scatter of gap thresholds was large for a given degree of hearing loss. In experiment II threshold was measured as a function of the delay between the onset of a 210-ms masker and the onset of a 10-ms signal in both simultaneous- and forward-masking conditions. The signal frequency was equal to the center frequency of the bandlimited noise masker, which was 0.5, 1.0, or 2.0 kHz. Five subjects with unilateral cochlear impairments, two subjects with bilateral impairments, and two normal subjects were tested. The rate of recovery from forward masking, particularly the initial rate, was usually slower for the impaired ears, even when the maskers were presented at equal SLs. Large gap thresholds tended to be associated with slow rates of recovery from forward masking.  相似文献   

2.
Thresholds for the detection of temporal gaps were measured using two types of signals to mark the gaps: bandpass-filtered noises and sinusoids. The first experiment used seven subjects with relatively flat unilateral moderate cochlear hearing loss. The normal ear of each subject was tested both at the same sound-pressure level (SPL) as the impaired ear, and at the same sensation level (SL). Background noise was used to mask spectral "splatter" associated with the gap. For the noise markers, gap thresholds tended to be larger for the impaired ears than for the normal ears when the comparison was made at equal SPL; the difference was reduced, but not eliminated, when the comparison was made at equal SL. Gap thresholds for both the normal and impaired ears decreased as the center frequency increased from 0.5 to 2.0 kHz. For the sinusoidal markers, gap thresholds were often similar for the normal and impaired ears when tested at equal SPL, and were larger for the normal ears when tested at equal SL. Gap thresholds did not change systematically with frequency. Gap thresholds using sinusoidal markers were smaller than those using noise markers. In the second experiment, three subjects with single-channel cochlear implants were tested. Gap thresholds for noise bands tended to increase with increasing center frequency when the noise bandwidth was fixed, and to decrease with increasing bandwidth when the center frequency was fixed. Gap thresholds for sinusoids did not change with center frequency, but decreased markedly with increasing level. Gap thresholds for sinusoids were considerably smaller than those for noise bands.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Two experiments are described in which frequency selectivity was estimated, in simultaneous and forward masking, for each ear of subjects with moderate (25-60 dB HL) unilateral cochlear hearing losses. In both experiments, the signal level was fixed for a given ear and type of masking (simultaneous or forward), and the masker level was varied to determine threshold, using an adaptive, two-alternative forced-choice procedure. In experiment I, the masker was a noise with a spectral notch centered at the signal frequency (either 1.0 or 1.5 kHz); threshold was determined as a function of notch width. Signal levels were chosen so that the noise level required at threshold for a notch width of zero was similar for the normal and impaired ear of each subject in both simultaneous and forward masking. The function relating threshold to notch width had a steeper slope for the normal ear than for the impaired ear of each subject. For the normal ears, these functions were steeper in forward masking than in simultaneous masking. This difference was interpreted as resulting from suppression. For the impaired ears, significant differences in the same direction were observed for three of the five subjects, but the differences were smaller. In experiment II, psychophysical tuning curves (PTCs) were determined in the presence of a fixed notched noise centered at the signal frequency (1.0 kHz). For the normal ears, the PTCs were sharper in forward masking than in simultaneous masking. For the impaired ears, the PTCs were similar in simultaneous and forward masking, but those in forward masking tended to be sharper at masker frequencies far removed from the signal frequency. Overall, the results suggest that suppression is reduced, but not completely absent in cases of moderate cochlear hearing loss.  相似文献   

4.
Overshoot was measured in both ears of four subjects with normal hearing and in five subjects with permanent, sensorineural hearing loss (two with a unilateral loss). The masker was a 400-ms broadband noise presented at a spectrum level of 20, 30, or 40 dB SPL. The signal was a 10-ms sinusoid presented 1 or 195 ms after the onset of the masker. Signal frequency was 1.0 or 4.0 kHz, which placed the signal in a region of normal (1.0 kHz) or impaired (4.0 kHz) absolute sensitivity for the impaired ears. For the normal-hearing subjects, the effects of signal frequency and masker level were similar to those published previously. In particular, overshoot was larger at 4.0 than at 1.0 kHz, and overshoot at 4.0 kHz tended to decrease with increasing masker level. At 4.0 kHz, overshoot values were significantly larger in the normal ears: Maximum values ranged from about 7-26 dB in the normal ears, but were always less than 5 dB in the impaired ears. The smaller overshoot values resulted from the fact that thresholds in the short-delay condition were considerably better in the hearing-impaired subjects than in the normal-hearing subjects. At 1.0 kHz, overshoot values for the two groups of subjects more or less overlapped. The results suggest that permanent, sensorineural hearing loss disrupts the mechanisms responsible for a large overshoot effect.  相似文献   

5.
A two-alternative forced-choice task was used to measure psychometric functions for the detection of temporal gaps in a 1-kHz, 400-ms sinusoidal signal. The signal always started and finished at a positive-going zero crossing, and the gap duration was varied from 0.5 to 6.0 ms in 0.5-ms steps. The signal level was 80 dB SPL, and a spectrally shaped noise was used to mask splatter associated with the abrupt onset and offset of the signal. Two subjects with normal hearing, two subjects with unilateral cochlear hearing loss, and two subjects with bilateral cochlear hearing loss were tested. The impaired ears had confirmed reductions in frequency selectivity at 1 kHz. For the normal ears, the psychometric functions were nonmonotonic, showing minima for gap durations corresponding to integer multiples of the signal period (n ms, where n is a positive integer) and maxima for durations corresponding to (n - 0.5) ms. For the impaired ears, the psychometric functions showed only small (nonsignificant) nonmonotonicities. Performance overall was slightly worse for the impaired than for the normal ears. The main features of the results could be accounted for using a model consisting of a bandpass filter (the auditory filter), a square-law device, and a sliding temporal integrator. Consistent with the data, the model demonstrates that, although a broader auditory filter has a faster transient response, this does not necessarily lead to improved performance in a gap detection task. The model also indicates that gap thresholds do not provide a direct measure of temporal resolution, since they depend at least partly on intensity resolution.  相似文献   

6.
Five subjects with unilateral cochlear hearing impairments and three normally hearing subjects made loudness matches between tones presented alternately to two ears, as a function of the intensity of the tone in the impaired ear (or the left ear of the normal subjects). The impaired ears showed recruitment; the rate of growth of loudness with increasing intensity was more rapid in the impaired ear than the normal ear. Presenting the tone in the impaired ear with two noise bands on either side of the tone frequency, at a fixed signal-to-noise ratio, did not abolish the recruitment. This suggests that recruitment is not caused by an abnormally rapid spread of excitation in the peripheral auditory system. At low signal-to-noise ratios, a continuous background noise reduced the loudness of the tone more than a noise gated with the tone, suggesting that the continuous noise induces adaptation to the tone. The noise had a greater effect on the loudness of the tone in normal ears than in impaired ears. It is possible that the loudness reduction of the tone in noise is mediated by suppression; suppression is weak or absent in impaired ears, and so the loudness reduction is smaller.  相似文献   

7.
Distortion product otoacoustic emission (DPOAE) suppression measurements were made in 20 subjects with normal hearing and 21 subjects with mild-to-moderate hearing loss. The probe consisted of two primary tones (f2, f1), with f2 held constant at 4 kHz and f2/f1 = 1.22. Primary levels (L1, L2) were set according to the equation L1 = 0.4 L2 + 39 dB [Kummer et al., J. Acoust. Soc. Am. 103, 3431-3444 (1998)], with L2 ranging from 20 to 70 dB SPL (normal-hearing subjects) and 50-70 dB SPL (subjects with hearing loss). Responses elicited by the probe were suppressed by a third tone (f3), varying in frequency from 1 octave below to 1/2 octave above f2. Suppressor level (L3) varied from 5 to 85 dB SPL. Responses in the presence of the suppressor were subtracted from the unsuppressed condition in order to convert the data into decrements (amount of suppression). The slopes of the decrement versus L3 functions were less steep for lower frequency suppressors and more steep for higher frequency suppressors in impaired ears. Suppression tuning curves, constructed by selecting the L3 that resulted in 3 dB of suppression as a function of f3, resulted in tuning curves that were similar in appearance for normal and impaired ears. Although variable, Q10 and Q(ERB) were slightly larger in impaired ears regardless of whether the comparisons were made at equivalent SPL or equivalent sensation levels (SL). Larger tip-to-tail differences were observed in ears with normal hearing when compared at either the same SPL or the same SL, with a much larger effect at similar SL. These results are consistent with the view that subjects with normal hearing and mild-to-moderate hearing loss have similar tuning around a frequency for which the hearing loss exists, but reduced cochlear-amplifier gain.  相似文献   

8.
Groups of human subjects were exposed in a diffuse sound field for 16--24 h to an octave-band noise centered at 4, 2, 1, or 0.5 kHz. Sound-pressure levels were varied on different exposure occasions. At specified times during an exposure, the subject was removed from the noise, auditory sensitivity was measured, and the subject was returned to the noise. Temporary threshold shifts (TTS) increased for about 8 h and then reached a plateau or asymptote. The relation between TTS and exposure duration can be described by a simple exponential function with a time constant of 2.1 h. In the frequency region of greatest loss, threshold shifts at asymptote increased about 1.7 dB for every 1 dB increase in the level of the noise above a critical level. Critical levels were empirically estimated to be 74.0 dB SPL at 4 kHz. 78 dB at 2 kHz, and 82 dB at 1 and 0.5 kHz. Except for the noise centered at 4.0 kHz, threshold shifts were maximal about 1/2 octave above the center frequency of the noise. A smaller second maximum was observed also at 7.0 kHz for the noise centered at 2.0 kHz, at 6.0 kHz for the noise centered at 1.0 kHz, and at 5.5 kHz for the noise centered at 0.5 kHz. After termination of the exposure, recovery to within 5 dB of pre-exposure thresholds was achieved within 24 h or less. Recovery can be described by a simple exponential function with a time constant of 7.1 h. The frequency contour defined by critical levels matches almost exactly the frequency contour defined by the E-weighting network.  相似文献   

9.
Auditory filter shapes at 8 and 10 kHz   总被引:1,自引:0,他引:1  
Auditory filter shapes were derived from notched-noise masking data at center frequencies of 8 kHz (for three spectrum levels, N0 = 20, 35, and 50 dB) and 10 kHz (N0 = 50 dB). In order to minimize variability due to earphone placement, insert earphones (Etymotic Research ER2) were used and individual earmolds were made for each subject. These earphones were designed to give a flat frequency response at the eardrum for frequencies up to 14 kHz. The filter shapes were derived under the assumption that a frequency-dependent attenuation was applied to all stimuli before reaching the filter; this attenuation function was estimated from the variation of absolute threshold with frequency for the three youngest normally hearing subjects in our experiments. At 8 kHz, the mean equivalent rectangular bandwidths (ERBs) of the filters derived from the individual data for three subjects were 677, 637, and 1011 Hz for N0 = 20, 35, and 50 dB, respectively. The filters at N0 = 50 dB were roughly symmetrical, while, at the lower spectrum levels, the low-frequency skirt was steeper than the high-frequency skirt. The mean ERB at 10 kHz was 957 Hz. At this frequency, the filters for two subjects were steeper on the high-frequency side than the low-frequency side, while the third subject showed a slight asymmetry in the opposite direction.  相似文献   

10.
Influence of monaural spectral cues on binaural localization   总被引:2,自引:0,他引:2  
Seven subjects located, monaurally and binaurally, narrow bands of noise originating in the horizontal plane. The stimuli were 1.0 kHz wide and centered at 4.0-14.0 kHz in steps of 0.5 kHz. The loudspeakers, 15 deg apart, were arranged in a semicircle (0-270-180 deg, azimuth). In the first part of the experiment all sounds emanated from the loudspeaker at 270 deg, but their apparent locations varied widely as a function of their center frequency. For each subject, the pattern of location judgments under the binaural listening condition corresponded to that recorded for the monaural condition. In the second part of the experiment the loudspeaker from which each of the same narrow bands of noise emanated was varied in irregular order. Again, monaural location judgments were governed by the frequency content of the noise bands. Binaural location judgments were strongly influenced by the sounds' frequency composition when the stimuli originated from 315-225 deg, notwithstanding the presence of interaural differences in time and intensity. For narrow bands of noise emanating off midline, monaural spectral cues significantly override binaural difference cues, and they also determine the resolution of front-back ambiguities.  相似文献   

11.
We have developed a high-Tc superconducting band-pass filter, whose center frequency and bandwidth can be tuned independently, with steep attenuation at both lower and higher band edges. This tunable filter is composed of two different types of band-pass filters, one with steep attenuation at the lower band edge and the other with steep attenuation at the higher band edge. Two filters are connected in series and each filter is covered with additional dielectric plates, respectively. The tuning characteristics of the entire filter can be controlled by adjusting the distances between the dielectric plates and the substrate. The entire filter was fabricated monolithically on a 30-mm-wide and 60-mm-long LaAlO3 substrate. A center frequency of 1.93 GHz, a 3 dB bandwidth of 20 MHz, and an attenuation of 30 dB, 1.0 MHz apart from both band edges, were obtained for the entire filter. Then, a sapphire plate was set above each of two filters, and a center frequency tuning of 10 MHz and a bandwidth tuning of 5 MHz were obtained by adjusting the distances between the substrate and the sapphire plates.  相似文献   

12.
To assess temporal integration in normal hearing, cochlear impairment, and impairment simulated by masking, absolute thresholds for tones were measured as a function of duration. Durations ranged from 500 ms down to 15 ms at 0.25 kHz, 8 ms at 1 kHz, and 2 ms at 4 and 14 kHz. An adaptive 2I, 2AFC procedure with feedback was used. On each trial, two 500-ms observation intervals, marked by lights, were presented with an interstimulus interval of 250 ms. The monaural signal was presented in the temporal center of one observation interval. The results for five normal and six impaired listeners show: (1) normal listeners' thresholds decrease by about 8 to 10 dB per decade of duration, as expected; (2) listeners with cochlear impairments generally show less temporal integration than normal listeners; and (3) listeners with impairments simulated using masking noise generally show the same amount of temporal integration as normal listeners tested in the quiet. The difference between real and simulated impairments indicates that the reduced temporal integration observed in impaired listeners probably is not due to splatter of energy to frequency regions where thresholds are low, but reflects reduced temporal integration per se.  相似文献   

13.
Depth resolution of spectral ripples was measured in normal humans using a phase-reversal test. The principle of the test was to find the lowest ripple depth at which an interchange of peak and trough position (the phase reversal) in the rippled spectrum is detectable. Using this test, ripple-depth thresholds were measured as a function of ripple density of octave-band rippled noise at center frequencies from 0.5 to 8 kHz. The ripple-depth threshold in the power domain was around 0.2 at low ripple densities of 4-5 relative units (center-frequency-to-ripple-spacing ratio) or 3-3.5 ripples/oct. The threshold increased with the ripple density increase. It reached the highest possible level of 1.0 at ripple density from 7.5 relative units at 0.5 kHz center frequency to 14.3 relative units at 8 kHz (5.2 to 10.0 ripple/oct, respectively). The interrelation between the ripple depth threshold and ripple density can be satisfactorily described by transfer of the signal by frequency-tuned auditory filters.  相似文献   

14.
A simultaneous masking procedure was used to derive four measures of frequency selectivity in the chinchilla. The first experiment measured critical masking ratios (CRs) at various signal frequencies. Estimates of the chinchillas' critical bandwidths derived from the CRs were much broader than comparable human estimates, indicating that the chinchilla may have inferior frequency selectivity. The second experiment measured critical bandwidths at 1, 2, and 4 kHz in a band-narrowing experiment. This technique yielded narrower estimates of critical bandwidth; however, chinchillas continued to exhibit poor frequency selectivity compared to man. The third experiment measured auditory-filter shape at 0.5, 1, and 2 kHz via rippled noise masking. Results of the rippled noise masking experiment indicate that auditory filters of humans and chinchillas are similar in terms of shape and bandwidth with chinchillas showing only slightly poorer frequency selectivity. The final experiment measured auditory filter shape at 0.5, 1, 2, and 4 kHz using notched noise masking. This experiment yielded auditory filter shapes and bandwidths similar to those derived from man. The discrepancy between the indirect estimates of frequency selectivity derived from CR and band-narrowing techniques and the direct estimates derived from rippled noise and notched noise masking are explained by taking into account the processing efficiency of the subjects.  相似文献   

15.
The perception of pitch for pure tones with frequencies falling inside low- or high-frequency dead regions (DRs) was examined. Subjects adjusted a variable-frequency tone to match the pitch of a fixed tone. Matches within one ear were often erratic for tones falling in a DR, indicating unclear pitch percepts. Matches across ears of subjects with asymmetric hearing loss, and octave matches within ears, indicated that tones falling within a DR were perceived with an unclear pitch and/or a pitch different from "normal" whenever the tones fell more than 0.5 octave within a low- or high-frequency DR. One unilaterally impaired subject, with only a small surviving region between 3 and 4 kHz, matched a fixed 0.5-kHz tone in his impaired ear with, on average, a 3.75-kHz tone in his better ear. When asked to match the 0.5-kHz tone with an amplitude-modulated tone, he adjusted the carrier and modulation frequencies to about 3.8 and 0.5 kHz, respectively, suggesting that some temporal information was still available. Overall, the results indicate that the pitch of low-frequency tones is not conveyed solely by a temporal code. Possibly, there needs to be a correspondence between place and temporal information for a normal pitch to be perceived.  相似文献   

16.
Thresholds were measured for the detection of a temporal gap in a bandlimited noise signal presented in a continuous wideband masker, using an adaptive forced-choice procedure. In experiment I the ratio of signal spectrum level to masker spectrum level (the SMR) was fixed at 10 dB and gap thresholds were measured as a function of signal bandwidth at three center frequencies: 0.4, 1.0, and 6.5 kHz. Performance improved with increasing bandwidth and increasing center frequency. For a subset of conditions, gap threshold was also measured as bandwidth was varied keeping the upper cutoff frequency of the signal constant. In this case the variation of gap threshold with bandwidth was more gradual, suggesting that subjects detect the gap using primarily the highest frequency region available in the signal. At low center frequencies, however, subjects may have a limited ability to combine information in different frequency regions. In experiment II gap thresholds were measured as a function of SMR for several signal bandwidths at each of three center frequencies: 0.5, 1.0, and 6.5 kHz. Gap thresholds improved with increasing SMR, but the improvement was minimal for SMRs greater than 12-15 dB. The results are used to evaluate the relative importance of factors influencing gap threshold.  相似文献   

17.
Frequency difference limens for pure tones (DLFs) and for complex tones (DLCs) were measured for four groups of subjects: young normal hearing, young hearing impaired, elderly with near-normal hearing, and elderly hearing impaired. The auditory filters of the subjects had been measured in earlier experiments using the notched-noise method, for center frequencies (fc) of 100, 200, 400, and 800 Hz. The DLFs for both impaired groups were higher than for the young normal group at all fc's (50-4000 Hz). The DLFs at a given fc were generally only weakly correlated with the sharpness of the auditory filter at that fc, and some subjects with broad filters had near-normal DLFs at low frequencies. Some subjects in the elderly normal group had very large DLFs at low frequencies in spite of near-normal auditory filters. These results suggest a partial dissociation of frequency selectivity and frequency discrimination of pure tones. The DLCs for the two impaired groups were higher than those for the young normal group at all fundamental frequencies (fo) tested (50, 100, 200, and 400 Hz); the DLCs for the elderly normal group were intermediate. At fo = 50 Hz, DLCs for a complex tone containing only low harmonics (1-5) were markedly higher than for complex tones containing higher harmonics, for all subject groups, suggesting that pitch was conveyed largely by the higher, unresolved harmonics. For the elderly impaired group, and some subjects in the elderly normal group, DLCs were larger for a complex tone with lower harmonics (1-12) than for tones without lower harmonics (4-12 and 6-12) for fo's up to 200 Hz. Some elderly normal subjects had markedly larger-than-normal DLCs in spite of near-normal auditory filters. The DLCs tended to be larger for complexes with components added in alternating sine/cosine phase than for complexes with components added in cosine phase. Phase effects were significant for all groups, but were small for the young normal group. The results are not consistent with place-based models of the pitch perception of complex tones; rather, they suggest that pitch is at least partly determined by temporal mechanisms.  相似文献   

18.
Auditory filter shapes were estimated in two bottlenose dolphins (Tursiops truncatus) and one white whale (Delphinapterus leucas) using a behavioral response paradigm and notched noise. Masked thresholds were measured at 20 and 30 kHz. Masking noise was centered at the test tone and had a bandwidth of 1.5 times the tone frequency. Half-notch width to center frequency ratios were 0, 0.125, 0.25, 0.375, and 0.5. Noise spectral density levels were 90 and 105 dB re: 1 microPa2/Hz. Filter shapes were approximated using a roex(p,r) function; the parameters p and r were found by fitting the integral of the roex(p,r) function to the measured threshold data. Mean equivalent rectangular bandwidths (ERBs) calculated from the filter shapes were 11.8 and 17.1% of the center frequency at 20 and 30 kHz, respectively, for the dolphins and 9.1 and 15.3% of the center frequency at 20 and 30 kHz, respectively, for the white whale. Filter shapes were broader at 30 kHz and 105 dB re: 1 microPa2/Hz masking noise. The results are in general agreement with previous estimates of ERBs in Tursiops obtained with a behavioral response paradigm.  相似文献   

19.
The accuracy of a method of simulating reduced frequency selectivity by the spectral smearing of complex stimuli has been evaluated. First an excitation pattern that would be evoked by a given nonsmeared stimulus in an impaired ear with broad auditory filters was estimated. Then the spectral smearing of the stimulus that would be necessary to create the same excitation pattern in a normal ear was calculated. The smearing was based on the shapes of simulated broad auditory filters; both symmetric and asymmetric broad filters were simulated. The method was used to process notched noise, and tones in notched noise, and the processed stimuli were used in a series of experiments with normally hearing subjects measuring the threshold for the tone in notched noise. The resulting data were used to derive auditory filter shapes. The derived filter shapes were generally similar to the expected shapes (based on the type of spectral smearing used), but there were some systematic discrepancies and some individual differences. The discrepancies do not seem to be due to the use of information derived from phase locking, since they were observed both at 1 kHz (where phase locking occurs) and at 6 kHz (where phase locking probably does not occurs). The discrepancies also do not seem to be due to the transmission characteristics of the outer/middle ear, since they occurred both when these characteristics were taken into account in the fitting procedure, and when the stimuli were preshaped to compensate for these characteristics. The influence of the subjects' own auditory filters probably can explain some of the discrepancies; the excitation pattern evoked by the spectrally smeared stimuli can be significantly influenced by the subjects' own filters when those filters are not much sharper than the simulated filters used to produce the smeared stimuli. Finally, some of the discrepancies can probably be explained by subjects combining information across auditory filters, rather than just using the single 'best' filter in each condition; this represents a limitation of the fitting procedure rather than of the simulation itself. Overall, the simulation worked reasonably well, especially when the smearing was based on symmetric filters.  相似文献   

20.
Temporal gap resolution was measured in five normal-hearing listeners and five cochlear-impaired listeners, whose sensitivity losses were restricted to the frequency regions above 1000 Hz. The stimuli included a broadband noise and three octave band noises centered at 0.5, 1.0, and 4.0 kHz. Results for the normal-hearing subjects agree with previous findings and reveal that gap resolution improves progressively with an increase in signal frequency. Gap resolution in the impaired listeners was significantly poorer than normal for all signals including those that stimulated frequency regions with normal pure-tone sensitivity. Smallest gap thresholds for the impaired listeners were observed with the broadband signal at high levels. This result agrees with data from other experiments and confirms the importance of high-frequency signal audibility in gap detection. The octave band data reveal that resolution deficits can be quite large within restricted frequency regions, even those with minimal sensitivity loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号