首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several humic materials are characterized by flow field-flow fractionation, including humic acids, a fulvic acid, and aqueous leachates from compost. Hydrophilic and hydrophobic fractions of a compost leachate were also examined. After characterizing molecular weight distributions, the effect of pH and salt concentration on hydrodynamic size is studied. In general, the hydrodynamic size decreases as the pH is lowered. However, humic acids form large aggregates below pH 5. Small amounts of sodium chloride have little effect on the size distributions. In contrast, a little calcium chloride reduces the hydrodynamic size of individual molecules while inducing the formation of oligomers, although severe aggregation is absent. With further additions of calcium chloride, the decrease in hydrodynamic size continues but oligomer formation subsides. Precise characterization of the unaggregated material is hindered by sample penetration through the channel membrane.  相似文献   

2.
The increasing demand on high-performance liquid chromatography to resolve mixtures of closely related components in complex biological matrices in less time with higher precision has led to the development of a variety of new high-performance liquid chromatography columns, which eliminate the need for sample preparation. These packings isolate small molecules from biological macromolecules on direct sample injection by exerting two separation mechanisms. They allow elution of all sample macromolecules with high recovery in one peak at the extraparticulate void, because of size-exclusion interactions with hydrophilic outer particulate surfaces. Simultaneously, these packings allow permeation and partitioning of small molecules on bonded-phases which are protected from contamination by macromolecules. The names given to these new packings include "internal surface reversed-phase", "shielded hydrophobic phase", "semipermeable surface", "dual zone material" and "mixed-functional phases". The fundamental principles behind each of the design concepts are reviewed, and applications are cited.  相似文献   

3.
The encapsulation and fractionated release of nucleic acids on vesicular packing (VP) materials have been investigated. The earlier described dependence of the permeation of nucleic acid molecules through the vesicle membranes on the salt concentration is a necessary precondition for both encapsulation and fractionation. Encapsulation is achieved by applying a suitable sample onto a VP column that has been equilibrated with a high-salt buffer. In that buffer the sample molecules are permeable. Immediately after sample application, elution is started with a low-salt buffer, from which the sample molecules are excluded. At the front between the two buffers the permeability changes, and some of the sample molecules distributed inside the vesicles cannot pass through the membranes. These encapsulated molecules can be released by increasing the salt concentration in the eluent. If the encapsulated nucleic acid sample is polydisperse, a stepwise or linear increase in the salt concentration leads to a fractionated release. The fractions obtained differ in their molecular size composition.  相似文献   

4.
We size fractionated a soil humic acid (HA) by preparative high performance size exclusion chromatography (HPSEC) and evaluated the analytical capacity of humeomics to isolate and identify humic molecular components in the separated size-fractions. HA and its three size-fractions were chemically fractionated to extract non-covalently bound organosoluble compounds (ORG1), weakly ester-bound organosoluble (ORG2) and hydrosoluble constituents (AQU2), strongly ester-bound organosoluble components (ORG3), and final unextractable residues (RES4). According to their solubility, the extracts were characterized by either GC–MS or on-line thermochemolysis/GC–MS techniques. The humeomic sequence showed that the analytical yields of identified compounds in either ORG or AQU extracts of size-fractions were invariably larger than for the unfractionated HA. This was attributed to a weaker conformational stability of humic suprastructures obtained by HPSEC fractionation, thereby enabling an improved separation and identification of single humic molecules. In line with the supramolecular understanding of humic substances, we found that hydrophobic compounds were mainly distributed in the largest size-fraction, while hydrophilic components were eluted in the smallest size-fraction. Furthermore, compounds with linear chains or stackable aromatic rings associated in regular structures were more abundant in the former fraction, whereas irregularly shaped compounds, that hindered association in larger size, were mostly found in the latter fraction. Thus the structural characteristics of single humic molecules determined their mutual association in humic suprastructures, as well as their conformational strength and shape. The lack of de novo synthesized macropolymers in the unfractionated soil humic matter was confirmed by the absence of RES4 fractions in the separated size-fractions. Our results indicate that humeomics capacity to reveal the complex molecular composition of humic suprastructures was significantly improved by subjecting humic matter to a preliminary HPSEC fractionation.  相似文献   

5.
The effect of humic acid on solid-phase extraction of polycyclic aromatic hydrocarbons (PAHs) from surface water was studied. The hydrophobic PAHs show significant association with humic acid, and this was confirmed to be the cause of negative effect when conventional reversed-phase solid-phase extraction (RP-SPE) was employed to extract the analytes from aqueous samples. As an alternative, dynamic ion-exchange (DIE) SPE could simultaneously extract both the fraction of the analytes which was associated with humic acid, and that which was freely dissolved. Using the 16 US Environmental Protection Agency priority PAHs as model compounds, the recoveries of the highly hydrophobic components by DIE-SPE were 10-30% higher than those by RP-SPE for a 1000-ml water sample dissolved with Aldrich humic acid (of 4.1 mg/l dissolved organic carbon content). A similar result was also obtained for 500 ml of natural surface water although the difference in recoveries between the two methods for this sample was smaller than that for the simulated sample. For validation of the method, the artifacts in connection with DIE-SPE in extracting the fraction of analytes which was freely dissolved and that which was associated with humic acid were investigated.  相似文献   

6.
This communication reports a study of the effect of ionic strength and electrolyte composition on fractions, separately collected by flow FFF, of a mixture of humic substances. Reverse phase HPLC analysis of three early eluting fractions suggests that the components released by the column behave as organic acids. The baseline‐resolved peaks of the first two fractions, subject to higher retention in solutions of lower pH and/or higher polarity, substantiate this suggestion. The fraction with larger components, as measured by flow FFF, also appears to contain acidic species. Their retention level, however, may not be accurately modulated by varying the mobile phase properties as these species are either totally retained in acidic phases or released before the void peak at pH ≥ 4.2. Besides showing the effective separation achieved in the flow FFF channel, this study reveals the pronounced difference in the physicochemical properties of some components of a humic mixture even with very close particle size.  相似文献   

7.
SANS from Pluronic P85 in d-water   总被引:2,自引:0,他引:2  
Small-angle neutron scattering (SANS) has been used to investigate Pluronic P85 (EO26PO40EO26) copolymer in deuterated water. A range of P85 fractions were measured for a wide sample temperature window. A rich phase behavior is reported. Unimers were observed below the critical micelle formation condition. At fixed P85 fraction, a number of micellar phases were observed upon increasing temperature; first spherical micelles, then cylindrical micelles, then lamellar micelles. At the highest temperature, a demixed lamellae phase was observed. Analysis of the SANS data consisted in fits to an empirical Guinier-Porod model that was appropriate for data fitting in the various phases at low P85 fractions. When the P85 fraction increased, an inter-particle structure factor was included to analyze SANS data from concentrated spherical micelles. At high P85 fractions, paracrystalline structures were observed as evidenced by an enhanced inter-particle interaction peak. A phase diagram for P85/d-water was obtained showing the various phases. Focusing on the spherical micelles phase for one sample composition, a core-shell model was used to fit SANS data and obtain sizes and scattering length densities. Using material balance equations, information such as the aggregation number (i.e., number of Pluronic macromolecules per micelle) and the number of hydration water molecules in the shell region are determined.  相似文献   

8.
Humic substances (HS) are a category of naturally occurring, biogenic, heterogeneous organic materials found in or extracted from soils, sediments, and natu- ral waters that can generally be characterized as being yellow-to-black in color, of highly variable relative molecular masses, and refractory[1,2]. Derived from a variety of organic precursors (plant biopolymers such as lignin etc.), plant residues and animal debris via both transformation and synthesis processes[3] under the profound ge…  相似文献   

9.
Electrospray ionization mass spectrometry (ESI-MS) was used to evaluate the average molecular mass of terrestrial humic substances, such as humic (HA) and fulvic (FA) acids from a soil, and humic acid from a lignite (NDL). Their ESI mass spectra, by direct infusion, gave average molecular masses comparable to those previously obtained for aquatic humic materials. The soil HA and FA were further separated in size-fractions by preparative high performance size exclusion chromatography (HPSEC) and analyzed with ESI-MS by both direct infusion and a further on-line analytical HPSEC. Unexpectedly, their average molecular mass was only slightly less than for the bulk sample and, despite different nominal molecular size, did not substantially vary among size-fractions. The values increased significantly (up to around 1200 Da) after on-line analytical HPSEC for the HA bulk sample, at both pH 8 and 4, and for the HA size-fractions when pH was reduced from 8 to 4. It was noticed that HA size-fractions at pH 8 were separated by on-line HPSEC in further peaks showing average masses which progressively increased with elution volume. Furthermore, when the HA and NDL bulk samples were sequentially ultracentrifuged at increasing rotational speed, their supernatants showed mass values which were larger than bulk samples and increased with rotational speed. These variations in mass values indicate that the electrospray ionization is dependent on the composition of the humic molecular mixtures and increases when their heterogeneity is progressively reduced. It is suggested that the dominance of hydrophobic compounds in humic supramolecular associations may inhibit the electrospray ionization of hydrophilic components. Our results show that ESI-MS is reasonably applicable to humic substances only after an extensive reduction of their chemical complexity.  相似文献   

10.
We investigated the principles of the capillary electrophoretic behaviour of humic substances (HSs) in physical gels. Long chain (Mr 4000, 6000 and 20,000) polyethylene glycols (PEGs) at concentrations above their entanglement threshold caused the separation of HS fractions according to molecular size differences. Close linear relationships between effective mobilities and mean apparent molecular masses were observed at PEG concentrations between 2.5 and 15%. The efficiency of the separation does not increase in gels of increasing polymer concentrations. The possibility of interactions between HSs and gel-forming polymers was also investigated. Short chain (Mr 400) PEGs, added to the buffer at concentrations from 2.5 to 12.5%, increased the migration times of all HS fractions, but no separation was obtained even at large polymer concentrations, showing that gel formation was essential for the separation. In 2.5% polyvinyl alcohol (PVA) 49 000 all fractions show two unresolved, but well defined peaks. This separation is probably artefactual and depends on the relative concentration of HSs and PVA, as the relative abundance of the peaks changes with the sample concentration.  相似文献   

11.
Methods for separation of ions by ion-exchange, ion-pair, and zwitterion ion chromatography share at least one common thread--the induced formation of a cation-anion pair in the stationary phase. Selectivity can be defined as the relative ability of sample ions to form such a pair. Examples are given in anion-exchange chromatography to show the effect of variations in the geometry, bulkiness and polarity of the resin cation on selectivity. The type of resin matrix, the hydrophobic nature of the resin surface and the degree of solvation also affect chromatographic behavior. The selectivity series observed in ion chromatography seems to be best explained by the interplay of two components: electrostatic attraction (ES) and the enforced-pairing (EP) that is brought about by hydrophobic attraction and by water-enforced ion pairing. Selectivity in ion-pair chromatography (IPC) and in zwitterion ion chromatography (ZIC) is affected by both the mobile phase cation and anion. This leads to elution orders for anions that are different from conventional ion-exchange chromatography (IC) of anions where cations are excluded from the stationary phase and have little effect on a separation. The elution order of anions in ZIC is similar to that in IC except for small anions of 2-charge, which are retained more weakly in ZIC. A unique advantage of ZIC is that sample ions can be eluted as ion pairs with pure water as the eluent and a conductivity detector. The mechanism for separation of anions on a zwitterionic stationary phase has been a subject for considerable debate. The available facts point strongly to a partitioning mechanism or a mixed mechanism in which partitioning is dominant with a weaker ion-exchange component.  相似文献   

12.
A model heterogeneous mixture of a hydrophilic tripeptide (phenylalanine-glycine-glycine, PGG) and hydrophobic organic acids ((12)C- and (13)C-octanoic acid and pentadecanoic acid) was subjected to electrospray ionization mass spectrometry (ESI-MS). The objective was to verify the previously noted inconsistencies in ESI-MS of complex environmental samples such as humic materials from either aquatic or terrestrial origins. The hydrophobic organic acids, either alone or together, reduced significantly the ESI-MS detection of the tripeptide molecular and self-associated ions at a concentration that was an order of magnitude lower than that of PGG. The most intense peaks were invariably those of the octanoic acid as either deprotonated, self-associated, or acetate-clustered molecules. The presence of equimolar amounts of PGG and organic acids yielded similar results, but with a significant increased detection of PDA and a smaller depression of the PGG signals. This behaviour is attributed to a different electrospray ionization of the mixture compounds depending on their most probable positioning at the surface of the evaporating droplet. The most favoured positioning of hydrophobic molecules at the aqueous-gas interphase allows preferential evaporation of hydrophobic ions whereas the hydrophilic molecules are retained in the droplet interior, and, their ESI-MS detection depressed. These findings suggest that the electrospray ionization of different molecules present in complex heterogeneous mixtures of environmental significance such as humic substances is limited by their concentration and reciprocal attracting forces.  相似文献   

13.
The possibility of humic acids acting as micellar phase in micellar electrokinetic chromatography was evaluated. We investigated the separation of naphthalene in capillary electrophoresis using various samples of humic acids as micellar phase under different pH conditions, concentrations of humic acid, and temperature. The humic acid samples studied were from different origins including peat, vermicompost and a commercial sample acquired from Aldrich. Methanol was used as a marker for the electroosmotic flow. The results indicate that the formation of micelle depends on the number and nature of the hydrophobic association sites in an aqueous humic acid solution and on the origin and concentration of the humic acid at a defined pH. At lower pH values, the possibility of the humic acid molecule forming pseudomicelles increases due to a combination of neutralized and dissociated charged sites.  相似文献   

14.
Summary Humic acids prepared from four horizons of a Podzol in the Segeberger Forest as well as different fractions of humic substances (fulvi acid, humic acid, and humin) of the Ahe horizon were characterized by a combination of analytical methods. As basis served the data from elemental analyses, UV/VIS-, FTIR-, and 13C-NMR spectroscopy, gel permeation chromatography using Fractogel TSK, and vapor pressure osmometry. Utilizing pyrolysis in direct coupling with field ionization mass spectrometry, more detailed information about structural features of the humic substances in soils could be obtained. In this manner, the different importance of carbohydrates, aromatic, and lipidic components in the various fractions is observed. The characteristic temperature dependence of the averaged molecular weights of the pyrolyzates indicates a basic structural skeleton, which is quite similar for the humic acids isolated from the different horizons. By degradation of the carbohydrates and increasing incorporation of lipidic components an enhanced biotransformation takes place with increasing depth of the soil profile.

Gewidmet Herrn Professor Dr. W. Fresenius zum 75. Geburtstag  相似文献   

15.
Temperature-responsive phase separations of poly(N-isopropylacrylamide) (PNiPAm)/dimethylsulfoxide (DMSO)/water mixtures have been investigated by infrared and confocal micro-Raman spectroscopy. The ternary mixtures exhibited lower critical solution temperature (LCST) and upper critical solution temperature (UCST) phenomena at low and high DMSO concentrations, respectively. The amide I band of PNiPAm consists of two components; the intensity of the 1650 cm-1 component increased, and that of the 1625 cm-1 component decreased with increasing temperature during both LCST and UCST phase transitions. Gradual red shifts of the C-H stretching and the amide II bands with increasing temperature or increasing DMSO concentration indicate a removal of water molecules from the alkyl and N-H groups. Raman microscopic measurements showed that DMSO is excluded from the polymer-rich phases upon both LCST and UCST phase separation. On the basis of the experimental results and the quantum chemical calculations, a model that explains the solvation change of the polymer during phase transitions was proposed.  相似文献   

16.
Mass spectra of complex polymer mixtures often disturbed by overlapping homologue peak series have been interpreted by means of the novel techniques of the residue mass plot and the abundance plot. The model substance used for the investigations is so far poorly characterized non-ionic emulsifier Cremophor EL (polyoxyl 35 castor oil) (CrEL), a heterogeneous polyethoxylate mixture. Because of its high amount of hydrophobic and hydrophilic components, CrEL was separated into two fractions, aqueous and methanolic, by cation exchange (CCaEx) chromatography. CrEL was then subjected to delayed extraction matrix-assisted laser desorption/ionization time of flight mass spectrometry (DE-MALDI-TOF-MS). Evaluation of the mass spectra was performed by comparing the residue masses of the homologue peak series with the calculated residue masses of potential components of the excipient cationized with Na+ and K+. A number of these series are overlapping because they differ in their theoretical residue masses by about 0.05 Da. The detection of these isobaric interferences was the basic requirement for our analysis method. This goal was achieved by high mass accuracy of the measurements (obtained by internal calibration) in combination with two newly developed evaluation methods, the residue mass plot and the abundance plot. Using this combined technique, generally applicable for complex polymer mixtures, it was shown that the aqueous CCaEx fraction contains hydrophobic components such as di- and triesters of ricinoleic acid and polyethylene glycol as well as glycerol polyoxyethylene di- and triricinoleates, whereas the methanolic fraction contains hydrophilic components, mainly polyethylene glycol (PEG) and glycerol polyoxyethylene ether. Moreover, free PEG was shown to consist of PEG 800 in contrast to the value of 600 Da described so far in literature.  相似文献   

17.
A kinetic study of Aldrich humic acid sorption onto a quartz sand surface has revealed an initial rapid uptake of humic acid molecules followed by a much slower sorption. The humic acid molecular weight and chemical fractionation resulting from adsorption onto the simple quartz sand surface were investigated for the two kinetic steps by coupled asymmetric flow-field flow fractionation-UV/visible absorption spectrophotometry. The molecular weight distribution of residual humic acid in solution after adsorption deviated from the original molecular weight distribution, showing preferential adsorption of certain molecular weight components. This fractionation is different after the two kinetic steps. Humic acid molecules characterised by a molecular weight below 4800 Da and with a weight-average molecular weight (M(w)) of 1450 Da were adsorbed after the fast kinetic step, whereas humic acid molecules in the molecular weight range 1400-9200 Da and of M(w) 3700 Da were adsorbed after the slower uptake. Therefore, the adsorption of low molecular weight humic components takes place initially, and is then followed by the adsorption of higher molecular weight components. Chemical adsorptive fractionation, investigated by studying the 253 nm/203 nm absorbance ratio over time, shows that aromatic components are preferentially adsorbed during the fast kinetic step. The fractionation pattern may be explained by the physicochemical characteristics of the Aldrich humic acid and the underlying sorption processes. The trend for the sorption kinetics of europium onto the quartz sand surface in the presence of humic acid is similar to that of the humic acid itself.  相似文献   

18.
The complexation of the uranyl ion with humic acid is investigated. The humic acid ligand concentration is described as the concentration of reactive humic acid molecules based on the number of humic acid molecules, taking protonation of functional groups into account. Excess amounts of U(VI) are used and the concentration of the humic acid complex is determined by the solubility enhancement over the solid phase. pH is varied between 7.5 to 7.9 in 0.1M NaClO4 under normal atmosphere and room temperature. The solubility of U(VI) in absence of humic acid is determined over amorphous solid phase between pH 4.45 and 8.62. With humic acid, only a limited range of data can be used for the determination of the complexation constant because of flocculation or sorption of the humic acid upon progressive complexation. Analysis of the complex formation dependency with pH shows that the dominant uranyl species in the concerned pH range are UO2(OH)+ and (UO2)3(OH)5 +. The complexation constant is evaluated for the humate interaction with the to UO2(OH)+ ion. The stability constant is found to be logβ = 6.94±0.3 l/mol. The humate complexation constant of the uranyl mono-hydroxo species thus is significantly higher than that of the nonhydrolyzed uranyl ion (6.2 l/mol). Published data on the Cm3+, CmOH2+ and Cm(OH)2 + humate complexation are reevaluated by the present approach. The higher stability of the hydrolysis complex is also found for Cm(III) humate complexation.  相似文献   

19.
A method based on an analytical technique, initially developed for quantifying aquatic refractory organic matter (often called humics), has been applied to commercial samples claiming to contain humic-type substances. At present, no method exists for quantifying the humic content on this type of sample. The analytical method is based on measuring the peak current obtained by adsorptive stripping voltammetry of the complex formed by refractory organic matter in the presence of trace amounts of Mo(VI). The quantification procedure requires the response obtained for the unknown sample to be compared with the response obtained with International Humic Substance Society (IHSS) reference humic substances. A very simple procedure that enables the humic content of any sample to be expressed as IHSS standard equivalents is described in detail. The method is highly selective, reproducible and suitable for routine analysis.  相似文献   

20.
Onsager-like theories are commonly used to describe the phase behavior of nematic (only orientationally ordered) liquid crystals. A key ingredient in such theories is the orientation-dependent excluded volume of two molecules. Although for hard convex molecular models this is generally known in analytical form, for more realistic molecular models that incorporate intramolecular flexibility, one has to rely on approximations or on computationally expensive Monte Carlo techniques. In this work, we provide a general correlation for the excluded volume of tangent hard-sphere chains of arbitrary chain length and flexibility. The flexibility is introduced by means of the rod-coil model. The resulting correlation is of simple analytical form and accurately covers a wide range of pure component excluded volume data obtained from Monte Carlo simulations of two-chain molecules. The extension to mixtures follows naturally by applying simple combining rules for the parameters involved. The results for mixtures are also in good agreement with data from Monte Carlo simulations. We have expressed the excluded volume as a second order power series in sin?(γ), where γ is the angle between the molecular axes. Such a representation is appealing since the solution of the Onsager Helmholtz energy functional usually involves an expansion of the excluded volume in Legendre coefficients. Both for pure components and mixtures, the correlation reduces to an exact expression in the limit of completely linear chains. The expression for mixtures, as derived in this work, is thereby an exact extension of the pure component result of Williamson and Jackson [Mol. Phys. 86, 819-836 (1995)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号