首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 364 毫秒
1.
Isolation of the therapeutic cannabinoid compounds from Cannabis Sativa L. (C. Sativa) is important for the development of cannabis-based pharmaceuticals for cancer treatment, among other ailments. The main pharmacological cannabinoids are THC and CBD. However, THC also induces undesirable psychoactive effects. The decarboxylation process converts the naturally occurring acidic forms of cannabinoids, such as cannabidiolic acid (CBDA) and tetrahydrocannabinolic acid (THCA), to their more active neutral forms, known as cannabidiol (CBD) and tetrahydrocannabinol (THC). The purpose of this study was to selectively extract cannabinoids using a novel in situ decarboxylation pressurized hot water extraction (PHWE) system. The decarboxylation step was evaluated at different temperature (80–150 °C) and time (5–60 min) settings to obtain the optimal conditions for the decarboxylation-PHWE system using response surface methodology (RSM). The system was optimized to produce cannabis extracts with high CBD content, while suppressing the THC and CBN content. The identification and quantification of cannabinoid compounds were determined using UHPLC-MS/MS with external calibration. As a result, the RSM has shown good predictive capability with a p-value < 0.05, and the chosen parameters revealed to have a significant effect on the CBD, CBN and THC content. The optimal decarboxylation conditions for an extract richer in CBD than THC were set at 149.9 °C and 42 min as decarboxylation temperature and decarboxylation time, respectively. The extraction recoveries ranged between 96.56 and 103.42%, 95.22 and 99.95%, 99.62 and 99.81% for CBD, CBN and THC, respectively.  相似文献   

2.
Development and validation of a method for simultaneous identification and quantification of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabinol (CBN), and metabolites 11-hydroxy-THC (11-OH-THC) and 11-nor-9-carboxy-THC (THCCOOH) in oral fluid. Simultaneous analysis was problematic due to different physicochemical characteristics and concentration ranges. Neutral analytes, such as THC and CBD, are present in ng/mL, rather than pg/mL concentrations, as observed for the acidic THCCOOH biomarker in oral fluid. THCCOOH is not present in cannabis smoke, definitively differentiating cannabis use from passive smoke exposure. THC, 11-OH-THC, THCCOOH, CBD, and CBN quantification was achieved in a single oral fluid specimen collected with the Quantisal™ device. One mL oral fluid/buffer solution (0.25 mL oral fluid and 0.75 mL buffer) was applied to conditioned CEREX® Polycrom™ THC solid-phase extraction (SPE) columns. After washing, THC, 11-OH-THC, CBD, and CBN were eluted with hexane/acetone/ethyl acetate (60:30:20, v/v/v), derivatized with N,O-bis-(trimethylsilyl)trifluoroacetamide and quantified by two-dimensional gas chromatography electron ionization mass spectrometry (2D-GCMS) with cold trapping. Acidic THCCOOH was separately eluted with hexane/ethyl acetate/acetic acid (75:25:2.5, v/v/v), derivatized with trifluoroacetic anhydride and hexafluoroisopropanol, and quantified by the more sensitive 2D-GCMS–electron capture negative chemical ionization (NCI-MS). Linearity was 0.5–50 ng/mL for THC, 11-OH-THC, CBD and 1–50 ng/mL for CBN. The linear dynamic range for THCCOOH was 7.5–500 pg/mL. Intra- and inter-assay imprecision as percent RSD at three concentrations across the linear dynamic range were 0.3–6.6%. Analytical recovery was within 13.8% of target. This new SPE 2D-GCMS assay achieved efficient quantification of five cannabinoids in oral fluid, including pg/mL concentrations of THCCOOH by combining differential elution, 2D-GCMS with electron ionization and negative chemical ionization. This method will be applied to quantification of cannabinoids in oral fluid specimens from individuals participating in controlled cannabis and Sativex® (50% THC and 50% CBD) administration studies, and during cannabis withdrawal.  相似文献   

3.
Holamine and funtumine, steroidal alkaloids with strong and diverse pharmacological activities are commonly found in the Apocynaceae family of Holarrhena. The selective anti-proliferative and cell cycle arrest effects of holamine and funtumine on cancer cells have been previously reported. The present study evaluated the anti-proliferative mechanism of action of these two steroidal alkaloids on cancer cell lines (HT-29, MCF-7 and HeLa) by exploring the mitochondrial depolarization effects, reactive oxygen species (ROS) induction, apoptosis, F-actin perturbation, and inhibition of topoisomerase-I. The apoptosis-inducing effects of the compounds were studied by flow cytometry using the APOPercentageTM dye and Caspase-3/7 Glo assay kit. The two compounds showed a significantly greater cytotoxicity in cancer cells compared to non-cancer (normal) fibroblasts. The observed antiproliferative effects of the two alkaloids presumably are facilitated through the stimulation of apoptosis. The apoptotic effect was elicited through the modulation of mitochondrial function, elevated ROS production, and caspase-3/7 activation. Both compounds also induced F-actin disorganization and inhibited topoisomerase-I activity. Although holamine and funtumine appear to have translational potential for the development of novel anticancer agents, further mechanistic and molecular studies are recommended to fully understand their anticancer effects.  相似文献   

4.
Oral fluid (OF) is an alternative biological matrix for monitoring cannabis intake in drug testing, and drugged driving (DUID) programs, but OF cannabinoid test interpretation is challenging. Controlled cannabinoid administration studies provide a scientific database for interpreting cannabinoid OF tests. We compared differences in OF cannabinoid concentrations from 19 h before to 30 h after smoking a 6.8 % THC cigarette in chronic frequent and occasional cannabis smokers. OF was collected with the Statsure Saliva Sampler? OF device. 2D-GC-MS was used to quantify cannabinoids in 357 OF specimens; 65 had inadequate OF volume within 3 h after smoking. All OF specimens were THC-positive for up to 13.5 h after smoking, without significant differences between frequent and occasional smokers over 30 h. Cannabidiol (CBD) and cannabinol (CBN) had short median last detection times (2.5–4 h for CBD and 6–8 h for CBN) in both groups. THCCOOH was detected in 25 and 212 occasional and frequent smokers’ OF samples, respectively. THCCOOH provided longer detection windows than THC in all frequent smokers. As THCCOOH is not present in cannabis smoke, its presence in OF minimizes the potential for false positive results from passive environmental smoke exposure, and can identify oral THC ingestion, while OF THC cannot. THC?≥?1 μg/L, in addition to CBD?≥?1 μg/L or CBN?≥?1 μg/L suggested recent cannabis intake (≤13.5 h), important for DUID cases, whereas THC?≥?1 μg/L or THC?≥?2 μg/L cutoffs had longer detection windows (≥30 h), important for workplace testing. THCCOOH windows of detection for chronic, frequent cannabis smokers extended beyond 30 h, while they were shorter (0–24 h) for occasional cannabis smokers.  相似文献   

5.
A sensitive and specific analytical method for cannabidiol (CBD) in urine was needed to define urinary CBD pharmacokinetics after controlled CBD administration, and to confirm compliance with CBD medications including Sativex—a cannabis plant extract containing 1:1 ?9-tetrahydrocannabinol (THC) and CBD. Non-psychoactive CBD has a wide range of therapeutic applications and may also influence psychotropic smoked cannabis effects. Few methods exist for the quantification of CBD excretion in urine, and no data are available for phase II metabolism of CBD to CBD-glucuronide or CBD-sulfate. We optimized the hydrolysis of CBD-glucuronide and/or -sulfate, and developed and validated a GC-MS method for urinary CBD quantification. Solid-phase extraction isolated and concentrated analytes prior to GC-MS. Method validation included overnight hydrolysis (16 h) at 37 °C with 2,500 units β-glucuronidase from Red Abalone. Calibration curves were fit by linear least squares regression with 1/x 2 weighting with linear ranges (r 2?>?0.990) of 2.5–100 ng/mL for non-hydrolyzed CBD and 2.5–500 ng/mL for enzyme-hydrolyzed CBD. Bias was 88.7–105.3 %, imprecision 1.4–6.4 % CV and extraction efficiency 82.5–92.7 % (no hydrolysis) and 34.3–47.0 % (enzyme hydrolysis). Enzyme-hydrolyzed urine specimens exhibited more than a 250-fold CBD concentration increase compared to alkaline and non-hydrolyzed specimens. This method can be applied for urinary CBD quantification and further pharmacokinetics characterization following controlled CBD administration.  相似文献   

6.
7.
BackgroundCannabis sativa has been attributed to different pharmacological properties. A number of secondary metabolites such as tetrahydrocannabinol (THC), cannabinol (CBD), and different analogs, with highly promising biological activity on CB1 and CB2 receptors, have been identified.MethodsThus, this study aimed was to evaluate the activity of THC, CBD, and their analogs using molecular docking and molecular dynamics simulations (MD) methods. Initially, the molecules (ligands) were selected by bioinformatics searches in databases. Subsequently, CB1 and CB2 receptors were retrieved from the protein data bank database. Afterward, each receptor and its ligands were optimized to perform molecular docking. Then, MD Simulation was performed with the most stable ligand-receptor complexes. Finally, the Molecular Mechanics-Generalized Born Surface Area (MM-PBSA) method was applied to analyze the binding free energy between ligands and cannabinoid receptors.ResultsThe results obtained showed that ligand LS-61176 presented the best affinity in the molecular docking analysis. Also, this analog could be a CB1 negative allosteric modulator like CBD and probably an agonist in CB2 like THC and CBD according to their dynamic behavior in silico. The possibility of having a THC and a CBD analog (LS-61176) as a promising molecule for experimental evaluation since it could have no central side-effects on CB1 and have effects of CB2 useful in pain, inflammation, and some immunological disorders. Docking results were validate using ROC curve for both cannabinoids receptor where AUC for CB1 receptor was 0.894±0.024, and for CB2 receptor AUC was 0.832±0032, indicating good affinity prediction.  相似文献   

8.
Betulinic acid (BA) is a naturally occurring pentacyclic triterpenoid and generally found in the bark of birch trees (Betula sp.). Although several studies have been reported that BA has diverse biological activities, including anti-tumor effects, the underlying anti-cancer mechanism in bladder cancer cells is still lacking. Therefore, this study aims to investigate the anti-proliferative effect of BA in human bladder cancer cell lines T-24, UMUC-3, and 5637, and identify the underlying mechanism. Our results showed that BA induced cell death in bladder cancer cells and that are accompanied by apoptosis, necrosis, and cell cycle arrest. Furthermore, BA decreased the expression of cell cycle regulators, such as cyclin B1, cyclin A, cyclin-dependent kinase (Cdk) 2, cell division cycle (Cdc) 2, and Cdc25c. In addition, BA-induced apoptosis was associated with mitochondrial dysfunction that is caused by loss of mitochondrial membrane potential, which led to the activation of mitochondrial-mediated intrinsic pathway. BA up-regulated the expression of Bcl-2-accociated X protein (Bax) and cleaved poly-ADP ribose polymerase (PARP), and subsequently activated caspase-3, -8, and -9. However, pre-treatment of pan-caspase inhibitor markedly suppressed BA-induced apoptosis. Meanwhile, BA did not affect the levels of intracellular reactive oxygen species (ROS), indicating BA-mediated apoptosis was ROS-independent. Furthermore, we found that BA suppressed the wound healing and invasion ability, and decreased the expression of Snail and Slug in T24 and 5637 cells, and matrix metalloproteinase (MMP)-9 in UMUC-3 cells. Taken together, this is the first study showing that BA suppresses the proliferation of human bladder cancer cells, which is due to induction of apoptosis, necrosis, and cell cycle arrest, and decrease of migration and invasion. Furthermore, BA-induced apoptosis is regulated by caspase-dependent and ROS-independent pathways, and these results provide the underlying anti-proliferative molecular mechanism of BA in human bladder cancer cells.  相似文献   

9.
毛细管气相色谱法对大麻中主要成分的定性定量分析   总被引:6,自引:0,他引:6  
彭兴盛 《色谱》1998,16(2):170-172
采用毛细管气相色谱法测定大麻中大麻酚、四氢大麻酚和大麻二酚的含量。以氯仿为提取溶剂,甲醇为色谱溶剂,用HP-5(10m×0.53mm×2.65μm)柱,以柱温220℃进行测定。大麻二酚、四氢大麻酚和大麻酚在20~120mg/L的浓度范围内线性关系良好,r分别为0.9994,0.9991和0.9995,回收率分别为97.3%~104.0%,97.3%~106.6%和95.3%~102.4%,最低检测限均为0.2μg/mL。利用3种主要成分保留时间的良好重现性也可进行定性。方法简便、快速、准确、灵敏。  相似文献   

10.
Eleven new cycloartane-type glycosides, named eremophilosides A-K have been isolated from the aerial parts of Astragalus eremophilus. Their structures were elucidated by MS and NMR experiments and the relative configurational analysis of eremophilosides C and D was carried out on the basis of the recently reported J-based method. Additionally, the cytotoxic activity of these compounds in MCF7 and U937 cell lines was evaluated. All tested compounds, except eremophilosides B, C, and J were found to inhibit slightly the growth (controlling the cell cycle) and/or to induce death processes in U937 cell line, the most susceptible cell line. Eremophilosides A and K resulted the most effective to induce cell death, the first by necrosis while the latter by apoptosis.  相似文献   

11.
Psoralen plus UVA (320–400 nm radiation; PUVA) is a highly effective therapy for cutaneous diseases caused by skin infiltration with normal or neoplastic T-lympho-cytes. In comparing the effects of pharmacologically relevant, low-dose PUVA treatment on growth of human keratinocytes, peripheral blood leukocytes (PBMC), and T-lymphocyte cell lines, we determined that PBMC or T-lymphocytes were >50-fold more sensitive to cytotoxic effects of PUVA, while antiproliferative effects were produced by similar PUVA levels in all cell types. Low doses of PUVA (10 ng/mL 8-methoxypsoralen and 1–2 J/cm2) were highly cytotoxic for phytohemagglutinin-activated normal lymphocytes or transformed T-lymphocytes as assessed by two viability assays and by flow cytofluo-rometry. Altered lymphocyte morphology, nuclear fragmentation, TUNEL+ nuclei or nuclear fragments, and the appearance of a sub-G, DNA peak indicated that cell death occurred by apoptosis, beginning about 1 day after PUVA treatment and continuing for several days thereafter. From assessment of cell cycle progression in mi-mosine-synchronized cells, PUVA treatment markedly slowed cell cycle progression, eventually producing cell cycle arrest and apoptotic entry. We propose that the probable basis for disease remissions (psoriasis, cutaneous T-cell lymphoma) produced by PUVA treatment is through selective cytotoxic effects on clonal T-lymphocyte populations that are concentrated in diseased skin.  相似文献   

12.
13.
Janerin is a cytotoxic sesquiterpene lactone that has been isolated and characterized from different species of the Centaurea genus. In this study, janerin was isolated form Centaurothamnus maximus, and its cytotoxic molecular mechanism was studied in THP-1 human leukemic cells. Janerin inhibited the proliferation of THP-1 cells in a dose-dependent manner. Janerin caused the cell cycle arrest at the G2/M phase by decreasing the CDK1/Cyclin-B complex. Subsequently, we found that janerin promoted THP-1 cell death through apoptosis as indicated by flow cytometry. Moreover, apoptosis induction was confirmed by the upregulation of Bax, cleaved PARP-1, and cleaved caspase 3 and the downregulation of an anti-apoptotic Bcl-2 biomarker. In addition, immunoblotting indicated a dose dependent upregulation of P38-MAPK and ERK1/2 phosphorylation during janerin treatment. In conclusion, we have demonstrated for the first time that janerin may be capable of inducing cell cycle arrest and apoptosis through the MAPK pathway, which would be one of the mechanisms underlying its anticancer activity. As a result, janerin has the potential to be used as a therapeutic agent for leukemia.  相似文献   

14.
Objectives: The toxicity of chemotherapeutic anticancer drugs is a serious issue in clinics. Drug discovery from edible and medicinal plants represents a promising approach towards finding safer anticancer therapeutics. Justicia insularis T. Anderson (Acanthaceae) is an edible and medicinal plant in Nigeria. This study aims to discover cytotoxic compounds from this rarely explored J. insularis and investigate their underlying mechanism of action. Methods: The cytotoxicity of the plant extract was evaluated in human ovarian cancer cell lines and normal human ovarian surface epithelia (HOE) cells using a sulforhodamine B assay. Bioassay-guided isolation was carried out using column chromatography including HPLC, and the isolated natural products were characterized using GC-MS, LC-HRMS, and 1D/2D NMR techniques. Induction of apoptosis was evaluated using Caspase 3/7, 8, and 9, and Annexin V and PI based flow cytometry assays. SwissADME and SwissTargetPrediction web tools were used to predict the molecular properties and possible protein targets of identified active compounds. Key finding: The two cytotoxic compounds were identified as clerodane diterpenoids: 16(α/β)-hydroxy-cleroda-3,13(14)Z-dien-15,16-olide (1) and 16-oxo-cleroda-3,13(14)E-dien-15-oic acid (2) from the Acanthaceous plant for the first time. Compound 1 was a very abundant compound (0.7% per dry weight of plant material) and was shown to be more potent than compound 2 with IC50 values in the micromolar range against OVCAR-4 and OVCAR-8 cancer cells. Compounds 1 and 2 were less cytotoxic to HOE cell line. Both compounds induced apoptosis by increasing caspase 3/7 activities in a concentration dependent manner. Compound 1 further increased caspase 8 and 9 activities and apoptosis cell populations. Compounds 1 and 2 are both drug like, and compound 1 may target various proteins including a kinase. Conclusions: Clerodane diterpenoids (1 and 2) in J. insularis were identified as cytotoxic to ovarian cancer cells via the induction of apoptosis, providing an abundant and valuable source of hit compounds for the treatment of ovarian cancer.  相似文献   

15.
Conventional chemotherapy remains an integral part of lung cancer therapy, regardless of its toxicity and drug resistance. Consequently, the discovery of an alternative to conventional chemotherapy is critical. Artemisia santolinifolia ethanol extract (AS) was assessed for its chemosensitizer ability when combined with the conventional anticancer drug, docetaxel (DTX), against non-small cell lung cancer (NSCLC). SRB assay was used to determine cell viability for A549 and H23 cell lines. The potential for this combination was examined by the combination index (CI). Further cell death, analyses with Annexin V/7AAD double staining, and corresponding protein expressions were analyzed. Surprisingly, AS synergistically enhanced the cytotoxic effect of DTX by inducing apoptosis in H23 cells through the caspase-dependent pathway, whereas selectively increased necrotic cell population in A549 cells, following the decline in GPX4 level and reactive oxygen species (ROS) activation with the highest rate in the combination treatment group. Furthermore, our results highlight the chemosensitization ability of AS when combined with DTX. It was closely associated with synergistic inhibition of oncogenesis signaling molecule STAT3 in both cell lines and concurrently downregulating prosurvival protein Survivin. Conclusively, AS could enhance DTX-induced cancer cells apoptosis by abrogating substantial prosurvival proteins’ expressions and triggering two distinct cell death pathways. Our data also highlight that AS might serve as an adjunctive therapeutic option along with a conventional chemotherapeutic agent in the management of NSCLC patients.  相似文献   

16.
A method was developed and validated for the simultaneous determination of five cannabinoids, viz. cannabidiol (CBD), cannabidiol acid (CBD-COOH), cannabinol (CBN), delta9-tetrahydrocannabinol (THC), and 3'-carboxy-delta9-all-trans-tetrahydrocannabinol (THC-COOH) in cannabis products. The cannabinoids were extracted from the grinded cannabis samples with a mixture of methanol-chloroform and analysed using liquid chromatography with ion-trap-mass-spectrometry (LC-IT-MSn). For quantification the two most abundant diagnostic MS-MS ions of the analyte in the sample and external standard were monitored. For confirmation purposes the EU criteria as described in Commission Decision 2002/657/EC were followed. Fully satisfactory results were obtained, that is, unequivocal confirmation according to the most stringent EU criteria was possible. The limits of quantification were 0.1 g/kg for CBD, 0.04 g/kg for CBD-COOH, 0.03 g/kg for CBN, 0.28 g/kg for THC and 9.9 g/kg for THC-COOH. The repeatabilities, defined by R.S.D., were 2% for CBN, THC and THC-COOH at the concentration levels of respectively 0.023, 3.3 and 113 g/kg and 5% for CBD-COOH at the level of 0.34 g/kg (n = 6).  相似文献   

17.
High performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) has been successfully applied to cannabis plant extracts in order to identify cannabinoid compounds after their quantitative isolation by means of supercritical fluid extraction (SFE). MS conditions were optimized by means of a central composite design (CCD) approach, and the analysis method was fully validated. Six major cannabinoids [tetrahydrocannabinolic acid (THCA), tetrahydrocannabinol (THC), cannabidiol (CBD), tetrahydrocannabivarin (THCV), cannabigerol (CBG), and cannabinol (CBN)] were quantified (RSD < 10%), and seven more cannabinoids were identified and verified by means of a liquid chromatograph coupled to a quadrupole-time-of-flight (Q-ToF) detector. Finally, based on the distribution of the analyzed cannabinoids in 30 Cannabis sativa L. plant varieties and the principal component analysis (PCA) of the resulting data, a clear difference was observed between outdoor and indoor grown plants, which was attributed to a higher concentration of THC, CBN, and CBD in outdoor grown plants. Graphical Abstract
Representative figure of the identification and quantification process of cannabinoids  相似文献   

18.
The cannabis-derived molecules, ∆9 tetrahydrocannabinol (THC) and cannabidiol (CBD), are both of considerable therapeutic interest for a variety of purposes, including to reduce pain and anxiety and increase sleep. In addition to their other pharmacological targets, both THC and CBD are competitive inhibitors of the equilibrative nucleoside transporter-1 (ENT-1), a primary inactivation mechanism for adenosine, and thereby increase adenosine signaling. The goal of this study was to examine the role of adenosine A2A receptor activation in the effects of intraperitoneally administered THC alone and in combination with CBD or PECS-101, a 4′-fluorinated derivative of CBD, in the cannabinoid tetrad, elevated plus maze (EPM) and marble bury assays. Comparisons between wild-type (WT) and A2AR knock out (A2AR-KO) mice were made. The cataleptic effects of THC were diminished in A2AR-KO; no other THC behaviors were affected by A2AR deletion. CBD (5 mg/kg) potentiated the cataleptic response to THC (5 mg/kg) in WT but not A2AR-KO. Neither CBD nor THC alone affected EPM behavior; their combination produced a significant increase in open/closed arm time in WT but not A2AR-KO. Both THC and CBD reduced the number of marbles buried in A2AR-KO but not WT mice. Like CBD, PECS-101 potentiated the cataleptic response to THC in WT but not A2AR-KO mice. PECS-101 also reduced exploratory behavior in the EPM in both genotypes. These results support the hypothesis that CBD and PECS-101 can potentiate the cataleptic effects of THC in a manner consistent with increased endogenous adenosine signaling.  相似文献   

19.
Two different microbial biosurfactants S9BS and CHBS were isolated from Lysinibacillus fusiformis S9 and Bacillus tequilensis CH. Cytotoxicity effect of these biosurfactants on human embryonic kidney cancerous cell (HEK-293) were studied with the help of 3-(4,5-dimethylthiazol-2yl-)-2, 5-diphenyl tetrazolium bromide (MTT) assay and morphological changes were observed under inverted microscope. The biosurfactants exhibited positive cytotoxic effect on HEK-293 cell line. It was found that LC50 of S9BS and CHBS were 75 and 100 μg ml?1, respectively. Further cell cycle and apoptosis analysis of biosurfactant-treated HEK-293 cell line were done by FACS. In this study, cytotoxic effect of glycolipid biosurfactant against HEK-293 cell lines is reported for the first time. Mechanism towards increased membrane permeability of biosurfactant-treated cancer cell may be the incorporation of its lipid moiety into the plasma membrane leading to formation of pores and membrane disruption. Hence, these microbial biosurfactants can prove to be significant biomolecule for cancer treatment.  相似文献   

20.
Cannabis sativa L. is an herbaceous plant belonging to the family of Cannabaceae. It is classified into three different chemotypes based on the different cannabinoids profile. In particular, fiber-type cannabis (hemp) is rich in cannabidiol (CBD) content. In the present work, a rapid nano liquid chromatographic method (nano-LC) was proposed for the determination of the main cannabinoids in Cannabis sativa L. (hemp) inflorescences belonging to different varieties. The nano-LC experiments were carried out in a 100 µm internal diameter capillary column packed with a C18 stationary phase for 15 cm with a mobile phase composed of ACN/H2O/formic acid, 80/19/1% (v/v/v). The reverse-phase nano-LC method allowed the complete separation of four standard cannabinoids in less than 12 min under isocratic elution mode. The nano-LC method coupled to ultraviolet (UV) detection was validated and applied to the quantification of the target analytes in cannabis extracts. The nano-LC system was also coupled to an electrospray ionization–mass spectrometry (ESI-MS) detector to confirm the identity of the cannabinoids present in hemp samples. For the extraction of the cannabinoids, three different approaches, including dynamic maceration (DM), ultrasound-assisted extraction (UAE), and an extraction procedure adapted from the French Pharmacopeia’s protocol on medicinal plants, were carried out, and the results achieved were compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号