首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
We present a three-dimensional quantum scattering model to treat reactions of the type H + C2H6 --> H2 + C2H5. The model allows the torsional and the stretching degrees of freedom to be treated explicitly. Zero-point energies of the remaining modes are taken into account in electronic structure calculations. An analytical potential-energy surface was developed from a minimal number of ab initio geometry evaluations using the CCSD(T,full)/cc-pVTZ//MP2(full)/cc-pVTZ level of theory. The reaction is endothermic by 1.5 kcal mol(-1) and exhibits a vibrationally adiabatic barrier of 12.0 kcal mol(-1). The results show that the torsional mode influences reactivity when coupled with the vibrational C-H stretching mode. We also found that ethyl radical products are formed internally excited in the torsional mode.  相似文献   

2.
The existence of recently observed scattering resonances in the hydrogen abstraction reaction F + CH4 --> FH + CH3 was investigated using the reduced dimensionality rotating line umbrella (RLU) quantum scattering model and employing an analytical potential energy surface, PES-2006, recently developed by our group. The calculations were performed in hyperspherical coordinates. The wells found in the hyperspherical adiabats, the oscillatory pattern in the cumulative and state-to-state reaction probabilities, the forward/backward predominance in the differential cross section at a collision energy of 1.8 kcal mol(-1), and the dramatic change of the scattering angle with energy are related to scattering resonances, and they are assigned to a quasi-bound complex on the vibrationally adiabatic ground-state potential.  相似文献   

3.
4.
The mechanism of the reactions of W and W(+) with the water molecule have been studied for several lower-lying electronic states of tungsten centers at the CCSD(T)/6-311G(d,p)+SDD and B3LYP/6-31G(d,p)+SDD levels of theory. It is shown that these reactions are essentially multistate processes, during which lower-lying electronic states of the systems cross several times. They start with the formation of initial prereaction M(H(2)O) complexes with M-H(2)O bonding energies of 9.6 and 48.2 kcal/mol for M = W and W(+), followed by insertion of the metal center into an O-H bond with 20.0 and 53.3 kcal/mol barriers for neutral and cationic systems, respectively. The overall process of M + H(2)O --> t-HM(OH) is calculated to be highly exothermic, 48.4 and 48.8 kcal/mol for M = W and W(+). From the HM(OH) intermediate the reaction may proceed via several different channels, among which the stepwise HM(OH) --> HMO + H --> (H)(2)MO and concerted HM(OH) --> (H)(2)MO pathways are more favorable and can compete (energetically) with each other. For the neutral system (M = W), the concerted process is the most favorable, whereas for the charged system (M = W(+)), the stepwise pathway is slightly more favorable. From the energetically most favorable intermediate (H)(2)MO the reactions proceed via H(2)-molecule formation with a 53.1 kcal/mol activation barrier for the neutral system. For the cationic system, H-H formation and dissociation is an almost barrierless process. The overall reaction of W and W(+) with the water molecule leading to H(2) + MO formation is found to be exothermic by 48.2 and 39.8 kcal/mol, respectively. In the gas phase with the collision-less conditions the reactions W((7)S) + H(2)O --> H(2) + WO((3)Sigma(+)), and W(+)((6)D) + H(2)O --> H(2) + WO(+)((4)Sigma(+)) are expected to proceed via a 10.4 and 5.1 kcal/mol overall energy barrier corresponding to the first O-H dissociation at the TS1. On the basis of these PESs, we predict kinetic rate constants for the reactions of W and W(+) with H(2)O.  相似文献   

5.
The mechanism for the CH3+C2H5OH reaction has been investigated by the modified Gaussian-2 method based on the geometric parameters of the stationary points optimized at the B3LYP/6-311+G(d,p) level of theory. Five transition states have been identified for the production of CH4+CH3CHOH (TS1), CH4+CH3CH2O (TS2), CH4+CH2CH2OH (TS3), CH3OH+CH3CH2 (TS4), and CH3CH2OCH3+H (TS5) with the corresponding barriers 12.0, 13.2, 16.0, 44.7, and 49.9 kcal/mol, respectively. The predicted rate constants and branching ratios for the three lower-energy H-abstraction reactions were calculated using the conventional and variational transition state theory with quantum-mechanical tunneling corrections for the temperature range 300-3000 K. The predicted total rate constant, kt=8.36 x 10(-76) T(20.00) exp(5258/T) cm3 mol(-1) s(-1) (300-600 K) and 6.10 x 10(-25) T(4.10)exp(-4058/T) cm3 mol(-1) s(-1) (600-3000 K), agrees closely with existing experimental data in the temperature range 403-523 K. Similarly, the predicted rate constants for CH3+CH3CD2OH and CD3+C2H5OD are also in reasonable agreement with available low temperature kinetic data.  相似文献   

6.
A general and practical procedure is described for calculating rate constants for chemical reactions using a minimal number of ab initio calculations and quantum-dynamical computations. The method exploits a smooth interpolating functional developed in the hyperspherical representation. This functional is built from two Morse functions and depends on a relatively small number of parameters with respect to conventional functionals developed to date. Thus only a small number of ab initio points needs to be computed. The method is applied to the H + CH4 --> H2 + CH3 reaction. The quantum scattering calculations are performed treating explicitly the bonds being broken and formed. All the degrees of freedom except the breaking and forming bonds are optimized ab initio and harmonic vibrational frequencies and zero-point energies for them are calculated at the MP2(full) level with a cc-pVTZ basis set. Single point energies are calculated at a higher level of theory with the same basis set, namely CCSD(T, full). We report state-to-state cross sections and thermal rate constants for the title reaction and make comparisons with previous results. The calculated rate constants are in good agreement with experiments.  相似文献   

7.
The reactions of trimethylindium (TMIn) with H2O and H2S are relevant to the chemical vapor deposition of indium oxide and indium sulfide thin films. The mechanisms and energetics of these reactions in the gas phase have been investigated by density functional theory and ab initio calculations using the CCSD(T)/[6-31G(d,p)+Lanl2dz]//B3LYP/[6-31G(d,p)+Lanl2dz] and CCSD(T)/[6-31G(d,p)+Lanl2dz] //MP2/[6-31G(d,p)+Lanl2dz] methods. The results of both methods are in good agreement for the optimized geometries and relative energies. When TMIn reacts with H2O and H2S, initial molecular complexes [(CH3)3In:OH2 (R1)] and [(CH3)3In:SH2 (R2)] are formed with 12.6 and 3.9 kcal/mol binding energies. Elimination of a CH4 molecule from each complex occurs with a similar energy barrier at TS1 (19.9 kcal/mol) and at TS3 (22.1 kcal/mol), respectively, giving stable intermediates (CH3)2InOH and (CH3)2InSH. The elimination of the second CH4 molecule from these intermediate products, however, has to overcome very high and much different barriers of 66.1 and 53.2 kcal/mol, respectively. In the case of DMIn with H2O and H2S reactions, formation of both InO and InS is exothermic by 3.1 and 30.8 kcal/mol respectively. On the basis of the predicted heats of formation of R1 and R2 at 0 K and -20.1 and 43.6 kcal/mol, the heats of formation of (CH3)2InOH, (CH3)2InSH, CH3InO, CH3InS, InO, and InS are estimated to be -20.6, 31.8, and 29.0 and 48.4, 35.5, and 58.5 kcal/mol, respectively. The values for InO and InS are in good agreement with available experimental data. A similar study on the reactions of (CH3)2In with H2O and H2S has been carried out; in these reactions CH3InOH and CH3InSH were found to be the key intermediate products.  相似文献   

8.
The multiple-channel reactions OH + CH3NHC(O)OCH3 --> products are investigated by direct dynamics method. The optimized geometries, frequencies, and minimum energy path are all obtained at the MP2/6-311+G(d,p) level, and energetic information is further refined by the BMC-CCSD (single-point) method. The rate constants for every reaction channels, R1, R2, R3, and R4, are calculated by canonical variational transition state theory with small-curvature tunneling correction over the temperature range 200-1000 K. The total rate constants are in good agreement with the available experimental data and the two-parameter expression k(T) = 3.95 x 10(-12) exp(15.41/T) cm3 molecule(-1) s(-1) over the temperature range 200-1000 K is given. Our calculations indicate that hydrogen abstraction channels R1 and R2 are the major channels due to the smaller barrier height among four channels considered, and the other two channels to yield CH3NC(O)OCH3 + H2O and CH3NHC(O)(OH)OCH3 + H2O are minor channels over the whole temperature range.  相似文献   

9.
A practical quantum-dynamical method is described for predicting accurate rate constants for general chemical reactions. The ab initio potential energy surfaces for these reactions can be built from a minimal number of grid points (average of 50 points) and expressed in terms of analytical functionals. All the degrees of freedom except the breaking and forming bonds are optimised using the MP2 method with a cc-pVTZ basis set. Single point energies are calculated on the optimised geometries at the CCSD(T) level of theory with the same basis set. The dynamics of these reactions occur on effective reduced dimensionality hyper-surfaces accounting for the zero-point energy of the optimised degrees of freedom. Bonds being broken and formed are treated with explicit hyperspherical time independent quantum dynamics. Application of the method to the H + CH(4)--> H(2)+ CH(3), H + C(2)H(6)--> H(2)+ C(2)H(5), H + C(3)H(8)--> H(2)+n-C(3)H(7)/H(2)+i-C(3)H(7) and H + CH(3)OH --> H(2)+ CH(3)O/H(2)+ CH(2)OH reactions illustrate the potential of the approach in predicting rate constants, kinetic isotope effects and branching ratios. All studied reactions exhibit large quantum tunneling in the rate constants at lower temperatures. These quantum calculations compare well with the experimental results.  相似文献   

10.
Rate constants for the OH + H2S --> H2O + HS reaction, which is important for both atmospheric chemistry and combustion, are calculated by direct dynamics with the M06-2X density functional using the MG3S basis set. Energetics are compared to high-level MCG3/3//MC-QCISD/3 wave function theory and to results obtained by other density functionals. We employ canonical variational transition-state theory with multidimensional tunneling contributions and scaled generalized normal-mode frequencies evaluated in redundant curvilinear coordinates with anharmonicity included in the torsion. The transition state has a quantum mechanically distinguishable, nonsuperimposable mirror image that corresponds to a separate classical reaction path; the effect of the multiple paths is examined through use of a symmetry number and by torsional methods. Calculations with the reference-potential Pitzer-Gwinn treatment of the torsional mode agree with experiment, within experimental scatter, and predict a striking temperature dependence of the activation energy, increasing from -0.1 kcal/mol at 200 K to 0.2, 1.0, 3.4, and 9.8 kcal/mol at 300, 500, 1000, and 2400 K. The unusual temperature dependence arises from a dynamical bottleneck at an energy below reactants, following an addition complex on the reaction path with a classical binding energy of 4.4 kcal/mol. As a way to check the mechanism, kinetic isotope effects of the OH + D2S and OD + D2S reactions have been predicted.  相似文献   

11.
We have calculated reaction rates for the reactions O + HD → OH + D and O + DH → OD + H using improved canonical variational transition state theory and least-action ground-state transmission coefficients with an ab initio potential energy surface. The kinetic isotope effects are in good agreement with experiment. The optimized tunneling paths and properties of the variational transition states and the rate enhancement for vibrationally excited reactants are also presented and compared with those for the isotopically unsubstituted reaction O + H2 → OH + H. The thermal reactions at low and room temperature are predicted to occur by tunneling at extended configurations, i.e., to initiate early on the reaction path and to avoid the saddle point regions. Tunneling also dominates the low and room temperature reactions for excited vibrational states, but in these cases the results are not as sensitive to the nature of the tunneling path. Overbarrier mechanisms dominate for both thermal and excited-vibrational state reactions for T > 600 K. For the excited-state reaction (with initial vibrational quantum number n > 0) a transition state switch occurs for T > 1000 K for the O + HD(n = 1) → OD + H case and for T > 1500 K for the O + DH(n = 1) → OD + H reaction, and this may be a general phenomenon for excited-state reactions at higher temperature. In the present case the switch occurs from an early variational transition state where the vibrationally adiabatic approximation is expected to be valid to a tighter variational transition state where nonadiabatic effects are probably important and should be included.  相似文献   

12.
The potential energy surface for the CH(2)O + ClO reaction was calculated at the QCISD(T)/6-311G(2d,2p)//B3LYP/6-311G(d,p) level of theory. The rate constants for the lower barrier reaction channels producing HOCl + HCO, H atom, OCH(2)OCl, cis-HC(O)OCl and trans-HC(O)OCl have been calculated by TST and multichannel RRKM theory. Over the temperature range of 200-2000 K, the overall rate constants were k(200-2000K) = 1.19 x 10(-13)T(0.79) exp(-3000.00/T). At 250 K, the calculated overall rate constant was 5.80 x 10(-17) cm(3) molecule(-1) s(-1), which was in good agreement with the experimental upper limit data. The calculated results demonstrated that the formation of HOCl + HCO was the dominant reaction channel and was exothermic by 9.7 kcal/mol with a barrier of 5.0 kcal/mol. When it retrograded to the reactants CH(2)O + ClO, an energy barrier of 14.7 kcal/mol is required. Furthermore, when HOCl decomposed into H + ClO, the energy required was 93.3 kcal/mol. These results suggest that the decomposition in both the forward and backward directions for HOCl would be difficult in the ground electronic state.  相似文献   

13.
A direct dynamics simulation at the B3LYP/6-311+G(d,p) level of theory was used to study the F- + CH3OOH reaction dynamics. The simulations are in excellent agreement with a previous experimental study (J. Am. Chem. Soc. 2002, 124, 3196). Two product channels, HF + CH2O + OH- and HF + CH3OO-, are observed. The former dominates and occurs via an ECO2 mechanism in which F- attacks the CH3- group, abstracting a proton. Concertedly, a carbon-oxygen double bond is formed and OH- is eliminated. Somewhat surprisingly this is not the reaction path, predicted by the intrinsic reaction coordinate (IRC), which leads to a deep potential energy minimum for the CH2(OH)2...F- complex followed by dissociation to HF + CH2(OH)O-. None of the direct dynamics trajectories followed this path, which has an energy release of -63 kcal/mol and is considerably more exothermic than the ECO2 path whose energy release is -27 kcal/mol. Other product channels not observed, and which have a lower energy than that for the ECO2 path, are F- + CO + H2 + H2O (-43 kcal/mol), F- + CH2O + H2O (-51 kcal/mol), and F- + CH2(OH)2 (-60 kcal/mol). Formation of the CH3OOH...F- complex, with randomization of its internal energy, is important, and this complex dissociates via the ECO2 mechanism. Trajectories which form HF + CH3OO- are nonstatistical events and, for the 4 ps direct dynamics simulation, are not mediated by the CH3OOH...F- complex. Dissociation of this complex to form HF + CH3OO- may occur on longer time scales.  相似文献   

14.
The mechanism for the O + CH2OH reaction was investigated by various ab initio quantum chemistry methods. For the chemical activation mechanism, that is, the addition/elimination path, the couple-cluster methods including CCSD and CCSD(T) were employed with the cc-pVXZ (X = D, T, Q, 5) basis sets. For the abstraction channels, multireference methods including CASSCF, CASPT2, and MRCISD were used with the cc-pVDZ and cc-pVTZ basis sets. It has been shown that the production of H + HCOOH is the major channel in the chemical activation mechanism. The minor channels include HCO + H2O and OH + CH2O. The hydrogen abstraction by an O atom from the CH2OH radical produces either OH + CH2O or OH + HCOH. Moreover, the two abstraction reactions are essentially barrierless processes. The rate constants for the association of O with CH2OH have been calculated using the flexible transition state theory. A weak negative temperature dependence of the rate constants is found in the range 250-1000 K. Furthermore, it is estimated that the abstraction processes also play an important role in the O + CH2OH reaction. Additionally, the falloff behavior for the OCH2OH --> H + HCOOH reaction has been investigated. The present theoretical results are compared to the experimental measurements to understand the mechanism and kinetic behavior of the O + CH2OH reaction and the unimolecular reaction of the OCH2OH radical.  相似文献   

15.
The energetics of the (1)CH(2) + C(2)H(2) --> H + C(3)H(3) reaction are accurately calculated using an extrapolated coupled-cluster/complete basis set (CBS) method based on the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets. The reaction enthalpy (0 K) is predicted to be -20.33 kcal/mol. This reaction has no classical barrier in either the entrance or exit channel. However, there are several stable intermediates-cyclopropene (c-C(3)H(4)), allene (CH(2)CCH(2)), and propyne (CH(3)CCH)-along the minimum energy path. These intermediates with zero-point energy corrections lie below the reactants by 87.11 (c-C(3)H(4)), 109.69 (CH(2)CCH(2)), and 110.78 kcal/mol (CH(3)CCH). The vibrationally adiabatic ground-state (VAG) barrier height for c-C(3)H(4) isomerization to allene is obtained as 45.2 kcal/mol, and to propyne as 37.2 kcal/mol. In addition, the (1)CH(2) + C(2)H(2) reaction is investigated utilizing the dual-level "scaling all correlation" (SAC) ab initio method of Truhlar et al., i.e., the UCCSD(SAC)/cc-pVDZ theory. Results show that the reaction occurs via long-lived complexes. The lifetime of the cyclopropene intermediate is obtained as 3.2 +/- 0.4 ps. It is found that the intermediate propyne can be formed directly from reactants through the insertion of (1)CH(2) into a C-H bond of C(2)H(2). However, compared to the major mechanism in which the propyne is produced through a ring-opening of the cyclopropene complex, this reaction pathway is much less favorable. Finally, the theoretical thermal rate constant exhibits a negative temperature dependence, which is in excellent agreement with the previous results. The temperature dependence is consistent with the earlier RRKM results but weaker than the experimental observations at high temperatures.  相似文献   

16.
A theoretical study is reported of the Cl+CH3OH-->CH2OH+HCl reaction based on the diffusion Monte Carlo (DMC) variant of the quantum Monte Carlo method. Using a DMC trial function constructed as a product of Hartree-Fock and correlation functions, we have computed the barrier height, heat of reaction, atomization energies, and heats of formation of reagents and products. The DMC heat of reaction, atomization energies, and heats of formation are found to agree with experiment to within the error bounds of computation and experiment. M?ller-Plesset second order perturbation theory (MP2) and density functional theory, the latter in the B3LYP generalized gradient approximation, are found to overestimate the experimental heat of reaction. Intrinsic reaction coordinate calculations at the MP2 level of theory demonstrate that the reaction is predominantly direct, i.e., proceeds without formation of intermediates, which is consistent with a recent molecular beam experiment. The reaction barrier as determined from MP2 calculations is found to be 2.24 kcal/mol and by DMC it is computed to be 2.39(49) kcal/mol.  相似文献   

17.
This paper examines the unimolecular dissociation of propargyl (HCCCH2) radicals over a range of internal energies to probe the CH+HCCH and C+C2H3 bimolecular reactions from the radical intermediate to products. The propargyl radical was produced by 157 nm photolysis of propargyl chloride in crossed laser-molecular beam scattering experiments. The H-loss and H2 elimination channels of the nascent propargyl radicals were observed. Detection of stable propargyl radicals gave an experimental determination of 71.5 (+5-10) kcal/mol as the lowest barrier to dissociation of the radical. This barrier is significantly lower than predictions for the lowest barrier to the radical's dissociation and also lower than calculated overall reaction enthalpies. Products from both H2+HCCC and H+C3H2 channels were detected at energies lower than what has been theoretically predicted. An HCl elimination channel and a minor C-H fission channel were also observed in the photolysis of propargyl chloride.  相似文献   

18.
Combustion of renewable biofuels, including energy-dense biodiesel, is expected to contribute significantly toward meeting future energy demands in the transportation sector. Elucidating detailed reaction mechanisms will be crucial to understanding biodiesel combustion, and hydrogen abstraction reactions are expected to dominate biodiesel combustion during ignition. In this work, we investigate hydrogen abstraction by the radicals H·, CH(3)·, O·, HO(2)·, and OH· from methyl formate, the simplest surrogate for complex biodiesels. We evaluate the H abstraction barrier heights and reaction enthalpies, using multireference correlated wave function methods including size-extensivity corrections and extrapolation to the complete basis set limit. The barrier heights predicted for abstraction by H·, CH(3)·, and O· are in excellent agreement with derived experimental values, with errors ≤1 kcal/mol. We also predict the reaction energetics for forming reactant complexes, transition states, and product complexes for reactions involving HO(2)· and OH·. High-pressure-limit rate constants are computed using transition state theory within the separable-hindered-rotor approximation for torsions and the harmonic oscillator approximation for other vibrational modes. The predicted rate constants differ significantly from those appearing in the latest combustion kinetics models of these reactions.  相似文献   

19.
Accurate quantum-mechanical results for thermodynamic data, cumulative reaction probabilities (for J = 0), thermal rate constants, and kinetic isotope effects for the three isotopic reactions H2 + CH3 --> CH4 + H, HD + CH3 --> CH4 + D, and D2 + CH3 --> CH(3)D + D are presented. The calculations are performed using flux correlation functions and the multiconfigurational time-dependent Hartree (MCTDH) method to propagate wave packets employing a Shephard interpolated potential energy surface based on high-level ab initio calculations. The calculated exothermicity for the H2 + CH3 --> CH4 + H reaction agrees to within 0.2 kcal/mol with experimentally deduced values. For the H2 + CH3 --> CH4 + H and D2 + CH3 --> CH(3)D + D reactions, experimental rate constants from several groups are available. In comparing to these, we typically find agreement to within a factor of 2 or better. The kinetic isotope effect for the rate of the H2 + CH3 --> CH4 + H reaction compared to those for the HD + CH3 --> CH4 + D and D2 + CH3 --> CH(3)D + D reactions agree with experimental results to within 25% for all data points. Transition state theory is found to predict the kinetic isotope effect accurately when the mass of the transferred atom is unchanged. On the other hand, if the mass of the transferred atom differs between the isotopic reactions, transition state theory fails in the low-temperature regime (T < 400 K), due to the neglect of the tunneling effect.  相似文献   

20.
The hydrogen abstraction reactions of CH3CHFCH3 and CH3CH2CH2F with the OH radicals have been studied theoretically by a dual-level direct dynamics method. The geometries and frequencies of all the stationary points are optimized by means of the DFT calculation. There are complexes at the reactant side or exit route, indicating these reactions may proceed via indirect mechanisms. To improve the reaction enthalpy and potential barrier of each reaction channel, the single point energy calculation is performed by the MC-QCISD/3 method. The rate constants are evaluated by canonical variational transition state theory (CVT) with the small-curvature tunneling correction method (SCT) over a wide temperature range 200-2000 K. The canculated CVT/SCT rate constants are consistent with available experimental data. The results show that both the variation effect and the SCT contribution play an important role in the calculation of the rate constants. For reactions CH3CHFCH3 and CH3CH2CH2F with OH radicals, the channels of H-abstraction from -CHF- and -CH2- groups are the major reaction channels, respectively, at lower temperature. Furthermore, to further reveal the thermodynamics properties, the enthalpies of formation of reactants CH3CHFCH3, CH3CH2CH2F, and the product radicals CH3CFCH3, CH3CHFCH2, CH3CH2CHF, CH3CHCH2F, and CH2CH2CH2F are studied using isodesmic reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号