首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We study the existence of dark solitons of the defocusing cubic nonlinear Schrödinger (NLS) eqaution with the spatially-periodic potential and nonlinearity. Firstly, we propose six families of upper and lower solutions of the dynamical systems arising from the stationary defocusing NLS equation. Secondly, by regarding a dark soliton as a heteroclinic orbit of the Poincaré map, we present some constraint conditions for the periodic potential and nonlinearity to show the existence of stationary dark solitons of the defocusing NLS equation for six different cases in terms of the theory of strict lower and upper solutions and the dynamics of planar homeomorphisms. Finally, we give the explicit dark solitons of the defocusing NLS equation with the chosen periodic potential and nonlinearity.  相似文献   

2.
We present exact analytical results for bright and dark solitons in a type of one-dimensional spatially inhomogeneous nonlinearity. We show that the competition between a homogeneous self-defocusing (SDF) nonlinearity and a localized self-focusing (SF) nonlinearity supports stable fundamental bright solitons. For a specific choice of the nonlinear parameters, exact analytical solutions for fundamental bright solitons have been obtained. By applying both variational approximation and Vakhitov-Kolokolov stability criterion, it is found that exact fundamental bright solitons are stable. Our analytical results are also confirmed numerically. Additionally, we show that a homogeneous SF nonlinearity modulated by a localized SF nonlinearity allows the existence of exact dark solitons, for certain special cases of nonlinear parameters. By making use of linear stability analysis and direct numerical simulation, it is found that these exact dark solitons are linearly unstable.  相似文献   

3.
We analyze the response of rational and regular (hyperbolic-secant) soliton solutions of an extended nonlinear Schro?dinger equation (NLSE) which includes an additional self-defocusing quadratic term, to periodic modulations of the coefficient in front of this term. Using the variational approximation (VA) with rational and hyperbolic trial functions, we transform this NLSE into Hamiltonian dynamical systems which give rise to chaotic solutions. The presence of chaos in the variational solutions is corroborated by calculating their power spectra and the correlation dimension of the Poincare? maps. This chaotic behavior (predicted by the VA) is not observed in the direct numerical solutions of the NLSE when rational initial conditions are used. The solitary-wave solutions generated by these initial conditions gradually decay under the action of the nonlinearity management. On the contrary, the solutions of the NLSE with exponentially localized initial conditions are robust solitary-waves with oscillations consistent with a chaotic or a complex quasiperiodic behavior.  相似文献   

4.
An averaged variational principle is applied to analyze the nonlinear effect of transverse perturbations (including diffraction) on quasi-one-dimensional soliton propagation governed by various wave equations. It is shown that parameters of the spatiotemporal solitons described by the cubic Schrödinger equation and the Yajima-Oikawa model of interaction between long-and short-wavelength waves satisfy the spatial quintic nonlinear Schrödinger equation for a complex-valued function composed of the amplitude and eikonal of the soliton. Three-dimensional solutions are found for two-component “bullets” having long-and short-wavelength components. Vortex and hole-vortex structures are found for envelope solitons and for two-component solitons in the regime of resonant long/short-wave coupling. Weakly nonlinear behavior of transverse perturbations of one-dimensional soliton solutions in a self-defocusing medium is described by the Kadomtsev-Petviashvili equation. The corresponding rationally localized “lump” solutions can be considered as secondary solitons propagating along the phase fronts of the primary solitons. This conclusion holds for primary solitons described by a broad class of nonlinear wave equations.  相似文献   

5.
We introduce a model of dual-core waveguide with the cubic nonlinearity and group-velocity dispersion (GVD) confined to different cores, with the linear coupling between them. The model can be realized in terms of photonic-crystal fibers. It opens a way to understand how solitons are sustained by the interplay between the nonlinearity and GVD which are not "mixed" in a single nonlinear Schrodinger (NLS) equation, but are instead separated and mix indirectly, through the linear coupling between the two cores. The spectrum of the system contains two gaps, semi-infinite and finite ones. In the case of anomalous GVD in the dispersive core, the solitons fill the semi-infinite gap, leaving the finite one empty. This soliton family is entirely stable, and is qualitatively similar to the ordinary NLS solitons, although shapes of the soliton's components in the nonlinear and dispersive cores are very different, the latter one being much weaker and broader. In the case of the normal GVD, the situation is completely different: the semi-infinite gap is empty, but the finite one is filled with a family of stable gap solitons featuring a two-tier shape, with a sharp peak on top of a broad "pedestal." This case has no counterpart in the usual NLS model. An extended system, including weak GVD in the nonlinear core, is analyzed too. In either case, when the solitons reside in the semi-infinite or finite gap, they persist if the extra GVD is anomalous, and completely disappear if it is normal.  相似文献   

6.
We generalize a recently proposed model based on the cubic complex Ginzburg-Landau (CGL) equation, which gives rise to stable dissipative solitons supported by localized gain applied at a “hot spot” (HS), in the presence of the linear loss in the bulk. We introduce a model with the Kerr nonlinearity concentrated at the HS, together with the local gain and, possibly, with the local nonlinear loss. The model, which may be implemented in laser cavities based on planar waveguides, gives rise to exact solutions for pinned dissipative solitons. In the case when the HS does not include the localized nonlinear loss, numerical tests demonstrate that these solitons are stable/unstable if the localized nonlinearity is self-defocusing/focusing. Another new setting considered in this work is a pair of two symmetric HSs. We find exact asymmetric solutions for it, although they are unstable. Numerical simulations demonstrate that stable modes supported by the HS pair tend to be symmetric. An unexpected conclusion is that the interaction between breathers pinned to two broad HSs, which are the only stable modes in isolation in that case, transforms them into a static symmetric mode.  相似文献   

7.
We report the results of a systematic analysis of the existence and stability of spatiotemporal (two-dimensional) solitons (STSs) in the model of a planar waveguide with the intrinsic χ(2) nonlinearity. Fundamental obstacles to the creation of STSs under physically realistic conditions are the normal sign of the group-velocity dispersion (GVD) at the second harmonic (SH), and the significant group-velocity mismatch (GVM) between the SH and fundamental-frequency (FF) components. To construct STS solutions in a numerical form, we adjust the iterative method, which was recently used for finding temporal (one-dimensional) χ(2) solitons in a similar setting. We identify effective existence borders for the STSs, within which the energy loss to the generation of extended “tails” in the SH component (due to the normal sign of the GVD) is negligible. It is demonstrated that the existence region can be made much broader by means of the GVD-management and GVM-management techniques. We also explore interactions between the STSs, and find robust two-soliton bound states, with a moderate separation in the longitudinal (temporal) direction. Head-on collisions between the STSs are always destructive.  相似文献   

8.
We investigate the exact bright and dark solitary wave solutions of an effective 1D Bose-Einstein condensate (BEC) by assuming that the interaction energy is much less than the kinetic energy in the transverse direction. In particular, following the earlier works in the literature Pérez-García et al. (2004) [50], Serkin et al. (2007) [51], Gurses (2007) [52] and Kundu (2009) [53], we point out that the effective 1D equation resulting from the Gross-Pitaevskii (GP) equation can be transformed into the standard soliton (bright/dark) possessing, completely integrable 1D nonlinear Schrödinger (NLS) equation by effecting a change of variables of the coordinates and the wave function. We consider both confining and expulsive harmonic trap potentials separately and treat the atomic scattering length, gain/loss term and trap frequency as the experimental control parameters by modulating them as a function of time. In the case when the trap frequency is kept constant, we show the existence of different kinds of soliton solutions, such as the periodic oscillating solitons, collapse and revival of condensate, snake-like solitons, stable solitons, soliton growth and decay and formation of two-soliton bound state, as the atomic scattering length and gain/loss term are varied. However, when the trap frequency is also modulated, we show the phenomena of collapse and revival of two-soliton like bound state formation of the condensate for double modulated periodic potential and bright and dark solitons for step-wise modulated potentials.  相似文献   

9.
We report the results of systematic numerical analysis of collisions between two and three stable dissipative solitons in the two-dimensional (2D) complex Ginzburg-Landau equation (CGLE) with the cubic-quintic (CQ) combination of gain and loss terms. The equation may be realized as a model of a laser cavity which includes the spatial diffraction, together with the anomalous group-velocity dispersion (GVD) and spectral filtering acting in the temporal direction. Collisions between solitons are possible due to the Galilean invariance along the spatial axis. Outcomes of the collisions are identified by varying the GVD coefficient, β, and the collision “velocity” (actually, it is the spatial slope of the soliton’s trajectory). At small velocities, two or three in-phase solitons merge into a single standing one. At larger velocities, both in-phase soliton pairs and pairs of solitons with opposite signs suffer a transition into a delocalized chaotic state. At still larger velocities, all collisions become quasi-elastic. A new outcome is revealed by collisions between slow solitons with opposite signs: they self-trap into persistent wobbling dipoles, which are found in two modifications — horizontal at smaller β, and vertical if β is larger (the horizontal ones resemble “zigzag” bound states of two solitons known in the 1D CGL equation of the CQ type). Collisions between solitons with a finite mismatch between their trajectories are studied too.  相似文献   

10.
Collisions of spatial solitons occurring in the nonlinear Schröinger equation with harmonic potential are studied, using conservation laws and the split-step Fourier method. We find an analytical solution for the separation distance between the spatial solitons in an inhomogeneous nonlinear medium when the light beam is self-trapped in the transverse dimension. In the self-focusing nonlinear media the spatial solitons can be transmitted stably, and the interaction between spatial solitons is enhanced due to the linear focusing effect (and also diminished for the linear defocusing effect). In the self-defocusing nonlinear media, in the absence of self-trapping or in the presence of linear self-defocusing, no transmission of stable spatial solitons is possible. However, in such media the linear focusing effect can be exactly compensated, and the spatial solitons can propagate through.  相似文献   

11.
This article presents a brief review of dynamical models based on systems of linearly coupled complex Ginzburg-Landau (CGL) equations. In the simplest case, the system features linear gain, cubic nonlinearity (possibly combined with cubic loss), and group-velocity dispersion (GVD) in one equation, while the other equation is linear, featuring only intrinsic linear loss. The system models a dual-core fiber laser, with a parallel-coupled active core and an additional stabilizing passive (lossy) one. The model gives rise to exact analytical solutions for stationary solitary pulses (SPs). The article presents basic results concerning stability of the SPs; interactions between pulses are also considered, as are dark solitons (holes). In the case of the anomalous GVD, an unstable stationary SP may transform itself, via the Hopf bifurcation, into a stable localized breather. Various generalizations of the basic system are briefly reviewed too, including a model with quadratic (second-harmonic-generating) nonlinearity and a recently introduced model of a different but related type, based on linearly coupled CGL equations with cubic-quintic nonlinearity. The latter system features spontaneous symmetry breaking of stationary SPs, and also the formation of stable breathers.  相似文献   

12.
We present a detailed study of the dynamics of light in passive nonlinear resonators with shallow and deep intracavity periodic modulation of the refractive index in both longitudinal and transverse directions of the resonator. We investigate solutions localized in the transverse direction (so-called Bloch cavity solitons) by means of envelope equations for underlying linear Bloch modes and solving Maxwell’s equations directly. Using a round-trip model for forward and backward propagating waves we review different types of Bloch cavity solitons supported by both focusing (at normal diffraction) and defocussing (at anomalous diffraction) nonlinearities in a cavity with a weak-contrast modulation of the refractive index. Moreover, we identify Bloch cavity solitons in a Kerr-nonlinear all-photonic crystal resonator solving Maxwell’s equations directly. In order to analyze the properties of Bloch cavity solitons and to obtain analytical access we develop a modified mean-field model and prove its validity. In particular, we demonstrate a substantial narrowing of Bloch cavity solitons near the zero-diffraction regime. Adjusting the quality factor and resonance frequencies of the resonator optimal Bloch cavity solitons in terms of width and pump energy are identified.  相似文献   

13.
李画眉  葛龙  何俊荣 《中国物理 B》2012,21(5):50512-050512
We present exact bright multi-soliton solutions of a generalized nonautonomous nonlinear Schrdinger equation with time-and space-dependent distributed coefficients and an external potential which describes a pulse propagating in nonlinear media when its transverse and longitudinal directions are nonuniformly distributed.Such solutions exist in certain constraint conditions on the coefficients depicting dispersion,nonlinearity,and gain(loss).Various shapes of bright solitons and interesting interactions between two solitons are observed.Physical applications of interest to the field and stability of the solitons are discussed.  相似文献   

14.
We show analytically that bright and dark spatial self-similar waves can propagate in graded-index amplifiers exhibiting self-focusing or self-defocusing Kerr nonlinearities. The intensity profiles of the novel waves are identical with those of fundamental bright or dark spatial solitons supported by homogeneous passive waveguides with the same type of nonlinearity. Thus, we reveal a previously unnoticed connection between spatial solitons and self-similar waves. We also suggest that the discovered self-similar waves can be used in a promising scheme for the amplification and focusing of spatial solitons in future all-optical networks.  相似文献   

15.
We investigate the effect of competing nonlinearities on beam dynamics in PT-symmetric potentials. In particular, we consider the stationary nonlinear Schrödinger equation (NLSE) in one dimension with competing cubic and generalized nonlinearity in the presence of a PT-symmetric potential. Closed form solutions for localized states are obtained. These solitons are shown to be stable over a wide range of potential parameters. The transverse power flow associated with these complex solitons is also examined.  相似文献   

16.
Using numerical methods, we construct families of vortical, quadrupole, and fundamental solitons in a two-dimensional (2D) nonlinear-Schrödinger/Gross-Pitaevskii equation which models Bose-Einstein condensates (BECs) or photonic crystals. The equation includes the attractive or repulsive cubic nonlinearity and an anisotropic periodic potential. Two types of anisotropy are considered, accounted for by the difference in the strengths of the 1D sublattices, or by a difference in their periods. The limit case of the quasi-1D optical lattice (OL), when one sublattice is missing, is included too. By means of systematic simulations, we identify stability limits for two species of vortex solitons and quadrupoles, of the rhombus and square types. In the attraction model, rhombic vortices and quadrupoles remain stable up to the limit case of the quasi-1D lattice. In the same model, finite stability limits are found for vortices and quadrupoles of the square type, in terms of the anisotropy parameter. In the repulsion model, rhombic vortices and quadrupoles are stable in large parts of the first finite bandgap (FBG). Another species of partly stable anisotropic states is found in the second FBG, subfundamental dipoles, each squeezed into a single cell of the OL. Square-shaped quadrupoles are completely unstable in the repulsion model, while vortices of the same type are stable only in weakly anisotropic OL potentials.  相似文献   

17.
We present analytical bright multisoliton solutions to the generalized nonautonomous nonlinear Schrödinger equation with time- and space-dependent distributed coefficients in Fourier-synthesized optical lattice potential based on the similarity transformation technique. Such solutions exist in certain constraint conditions on the coefficients depicting dispersion, nonlinearity, and gain (or loss). Various shapes of bright solitons and interesting interactions between two solitons are observed, including soliton trains, collapse and revival of condensates, and two periodic M-shape solitons with collision. Phenomena of a few solitons and physical applications of interest to the field are discussed.  相似文献   

18.
Gaussian-type soliton solutions of the nonlinear Schrödinger (NLS) equation with fourth order dispersion, and power law nonlinearity in the novel parity-time (${ \mathcal P }{ \mathcal T }$)-symmetric quartic Gaussian potential are derived analytically and numerically. The exact analytical expressions of the solutions are obtained in the first two-dimensional (1D and 2D) power law NLS equations. By means of the linear stability analysis, the effect of power law nonlinearity on the stability of Gauss type solitons in different nonlinear media is carried out. Numerical investigations do confirm the stability of our soliton solutions in both focusing and defocusing cases, specially around the propagation parameters.  相似文献   

19.
Chen Z  Shih MF  Segev M  Wilson DW  Muller RE  Maker PD 《Optics letters》1997,22(23):1751-1753
We report the observation of steady-state photorefractive vortex-screening solitons. As a singly charged circular vortex nested on a broad beam propagates through a biased strontium barium niobate crystal, it self-traps in both transverse dimensions despite the inherent anisotropy of the photorefractive nonlinearity. When the vortex beam is a doughnut-shaped narrow beam, it breaks up into two elongated slices (with a self-defocusing nonlinearity) or into two focused filaments (with a self-focusing nonlinearity). We demonstrate the optical guidance of a probe beam in a circular waveguide induced by the self-trapped vortex.  相似文献   

20.
We consider self-trapping of 2D solitons in the model based on theGross-Pitaevskii/nonlinear Schrödinger equation with the self-attractivecubic nonlinearity and a periodic potential of the optical-lattice (OL)type. It is known that this model may suppress the collapse, giving rise toa family of stable fundamental solitons. Here, we report essential dynamical featuresof self-trapping of the fundamental solitons from input configurations oftwo types, with vorticity 0 or 1. We identify regions in the respectiveparameter spaces corresponding to the formation of the soliton, collapse,and decay. A noteworthy result is the self-trapping of stable fundamentalsolitons in cases when the input norm essentially exceeds the collapsethreshold. We also compare predictions of the dynamical variationalapproximation with direct numerical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号