首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive and solvent-free procedure for the determination of non-steroidal acidic anti-inflammatory drugs in water samples was optimized using solid-phase microextraction (SPME) followed by on-fiber silylation of the acidic compounds and gas chromatography-mass spectrometry (GC-MS) determination. Microextraction was carried out directly over the filtered water samples using a polyacrylate fiber. Derivatization was performed placing the SPME fiber, loaded with the extracted analytes, in the headspace of a vial containing 50 microl of N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA). Derivatives were desorbed for 3 min in the GC injector. Influence of several parameters in the efficiency of microextraction (volume of sample, time, pH, type of fiber coating, etc.) and derivatization steps (time, temperature and volume of MTBSTFA) was systematically investigated. In the optimal conditions an excellent linearity over three orders of magnitude and quantification limits at the ng/l level (from 12 to 40 ng/l) were achieved. The proposed method was applied to the determination of acidic compounds in sewage water and results compared to those obtained using solid-phase extraction (SPE) followed by the derivatization of the compounds in the organic extract of the solid-phase extraction cartridge.  相似文献   

2.
Trace determination (low ng/ml) of linear alkylbenzensulfonates (LASs) in water was achieved by solid-phase microextraction (SPME) of ion-pairs formed with tetrabutylammonium. This ion-pairing reagent served two purposes. First, it allowed the extraction of LAS with the polydimethylsiloxane fiber by counterion association and second, the derivatization of the formed LAS ion pairs in the GC injection port at 300 degrees C to form the corresponding sulfonated butyl esters. The methodology developed allows the isomer specific determination of LAS at low detection limits (0.16-0.8 ng/ml), depending on the alkyl chain lengths of LASs with RSDs of 10-12%. Furthermore, the developed methodology was applied to urban wastewater and sea water and compared with a solid-phase extraction (SPE) method (e.g. C18 and strong anion-exchange sorbent) to obtain concordant values for urban wastewater. Moreover, the developed SPME methodology overcame the procedural blank and matrix-dependent recoveries found in the SPE methodologies at low LAS concentrations.  相似文献   

3.
This paper deals with comparison of efficiency of extraction techniques (solid-phase extraction, SPE and solid-phase microextraction, SPME) used for extraction of nitrate esters (ethyleneglycoldinitrate, EGDN and nitroglycerin, NG), representing the first step of the method of quantitative determination of trace concentrations of nitrate esters in water samples. EGDN and NG are subsequently determined by means of high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Optimization of SPE and SPME conditions was carried out using model water samples. Seven SPE cartridges were tested and the conditions were optimized (type of sorbent, type and volume of solvent to be used as eluent). For both nitrate esters the limit of detection (LOD) and the limit of quantification (LOQ) obtained using SPE/HPLC-UV were 0.23 microg mL(-1) and 0.70 microg mL(-1), respectively. Optimization of SPME conditions: type of SPME fibre (four fibres were tested), type and time of sorption/desorption, temperature of sorption. PDMS/DVB (polydimethylsiloxane/divinylbenzene) fibre coating proved to be suitable for extraction of EGDN and NG. For this fibre the LOD and the LOQ for both nitrate esters were 0.16 microg mL(-1) and 0.50 microg mL(-1), respectively. Optimized methods SPE/HPLC-UV and SPME/HPLC-UV were then used for quantitative determination of nitrate esters content in real water samples from the production of EGDN and NG.  相似文献   

4.
A solid-phase microextraction (SPME) method has been developed to determine two methylated arsenic species in human urine samples by GC-MS. The direct extraction of the methyl arsenic compounds by SPME after thioglycol methylate derivatization was studied. Direct extraction with SPME was suitable for the determination of trace levels of dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) in urine samples. Four different commercial SPME fibers were tested for the extraction of methyl arsenic compounds, and the best results were obtained using the polydimethylsiloxane coating. The extraction and desorption time profiles of DMA and MMA were determined. The detection limits for DMA and MMA using the SPME-GC-MS method were 0.12 and 0.29 ng/ml, respectively. The method is linear in the 1 to 200 ng/ml range.  相似文献   

5.
Solid-phase extraction (SPE) and solid-phase microextraction (SPME) were evaluated for the analysis of short-chain chlorinated paraffins (SCCPs) in water samples using gas chromatography coupled to negative chemical ionisation mass spectrometry (GC-NCI-MS). For SPE optimisation, four commercially available SPE cartridges were tested and several SPE parameters, such as the elution solvent, elution volume and breakthrough volume were studied. The best results were obtained with Varian Bond Elut-C18. In order to achieve a high selectivity in the determination of SCCPs, GC-NCI-MS was used. Quality parameters of the optimised SPE and SPME procedures were determined, and the best results were obtained for the SPE/GC-NCI-MS method with LODs of 5 and 20 ng l(-1) for tap and river water, respectively. This method was successfully applied to the analysis of SCCPs in river water samples at concentrations below the microg l(-1) level.  相似文献   

6.
Summary A study of different extraction techniques for the determination of a selected group of organochlorine compounds in surface waters is presented. Comparison of liquid-liquid extraction (LLE) with solid-phase extraction (SPE) and solid-phase microextraction (SPME) with fibers of different polarity shows that SPME with a recently commercialised fiber of polydimethylsiloxane divinylbenzene allows these compounds to be determined in surface waters with good extraction efficiencies. Extraction time, effect of temperature, ionic strength and pH were optimised, allowing quantification in agricultural effluents in the range 1.0–60 ng·L−1.  相似文献   

7.
In this study, a combination of solid-phase extraction (SPE) and solid-phase microextraction (SPME) has been used to determine chlorobenzenes in air. Analytes were sampled by pumping a known volume of air through a porous polymer (Tenax TA). Then, the adsorbent was transferred into a glass vial and SPME was performed. The quantification was carried out using gas chromatography (GC)-electron-capture detection or GC-MS. Several SPME coatings (100 microm poly(dimethylsiloxane) (PDMS), 75 microm Carboxen (CAR)-PDMS, 65 microm PDMS-divinylbenzene (DVB), 65 microm PDMS-DVB and 85 microm polyacrylate (PA) were evaluated, obtaining the highest responses with Carbowax (CW)- PDMS for the most volatile chlorobenzenes, and with PDMS-DVB or CW-DVB fibers for the semivolatile compounds. To optimize some other factors that could affect the SPME step, a factorial design was used. Kinetic studies of the SPME process were also performed. Concerning the SPE step, breakthrough was studied, showing that 2.5 m3 of air could be processed without losses of the most volatile compounds. The performance of the method was evaluated. External calibration, which does not require the complete sampling process, demonstrated to be suitable, obtaining good linearity (R2 > 0.99) for all chlorobenzenes. Recovery studies were performed at two concentration levels (4 and 40 ng/m3), obtaining quantitative recoveries (>80%). Limits of detection at the sub ng/m3 were achieved for all the target compounds.  相似文献   

8.
A solvent-free method for the determination of five estrogens in water samples at the low ng/l was optimized. Compounds were first concentrated on a polyacrylate (PA) solid-phase microextraction (SPME) fiber, directly exposed to the water sample, and then on-fiber silylated on the headspace of a vial containing 50 microl of N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA). Derivatized analytes were determined using GC with MS/MS detection. Influence of several factors on the efficiency of the microextraction step (e.g. time, sample volume, pH, ionic strength and fiber coating) is systematically described. Derivatization conditions were optimized in order to achieve the complete silylation of all hydroxyl groups contained in the structure of the compounds. Detection limits (from 0.2 to 3 ng/l) are compared with those obtained using the same detection technique and different sample preparation strategies, such as solid-phase extraction followed by silylation of the analytes in the organic extract and SPME without derivatization. The method was applied to the analysis of sewage water samples. Two of the investigated species were detected above the quantification limits of the procedure.  相似文献   

9.
The feasibility of different extraction procedures was tested and compared for the determination of 12 organophosphorus and carbamates insecticides in honey samples. In this sense, once the samples were pre-treated - essentially dissolved in hot water by stirring - and before they could be analyzed by liquid chromatography-ion trap-second stage mass spectrometry (LC-MS(2)), four different approaches were studied for the extraction step: QuEChERS, solid-phase extraction (SPE), pressurized liquid extraction (PLE) and solid-phase microextraction (SPME). The main aim of this work was to maximise the sensitivity of pesticides and to minimise the presence of interfering compounds in the extract. All pesticides were linear in the range from CC(β) to 1000× CC(β) for the four extraction methods (three orders of magnitude). Detection capabilities (CC(β)) were 0.024-1.155 mg kg(-1) with QuEChERS, 0.010-0.646 mg kg(-1) with SPE, 0.007-0.595 mg kg(-1) with PLE, and 0.001-0.060 mg kg(-1) with SPME. All the target compounds could be recovered by any of the methods, at a CC(β) fortification level ranged from 28 to 90% for the SPME. In comparison, the PLE method was the most efficient extraction method with recoveries from 82 to 104%. It was followed by the QuEChERS method with recoveries between 78 and 101% and the SPE method with recoveries between 72 and 100%. The repeatability expressed as relative standard deviation (RSDs) was below 20% for all the pesticides by any of the tested extraction methods. Results obtained applying the four extraction techniques to real honey samples are analogous.  相似文献   

10.
A solid-phase microextraction (SPME) method for the determination of triclosan, methyl triclosan, 2,4-dichlorophenol and 2,3,4-trichlorophenol (considered as possible triclosan metabolites) in water samples was optimised. Analytes were first concentrated on a SPME fibre, directly exposed to the sample, and then triclosan and the two chlorinated phenols on-fibre silylated using N-methyl-N-(tert.-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA). Methyl triclosan remained unaffected during the derivatization step. Compounds were determined using gas chromatography in combination with mass spectrometry (GC-MS). Influence of different factors on the efficiency of extraction and derivatization steps was systematically investigated. Using a polyacrylate (PA) fibre quantification limits below 10 ng/l, and acceptable relative standard deviations, were obtained for all compounds after an extraction time of 30 min. On-fibre silylation was carried out in only 10 min. Moreover, the efficiency of the procedure was scarcely affected by the type of water sample. The method was applied to several samples of treated and raw wastewater, triclosan was found in all samples, at concentrations from 120 to 14,000 ng/l, and 2,4-dichlorophenol in most of them, at levels up to 2222 ng/l.  相似文献   

11.
In this work, we optimize a solid phase microextraction (SPME) method for the simultaneous collection of antibiotics (sulfonamides, macrolides, and trimethoprim) present in wastewaters. The performance of the SPME method is compared to a solid phase extraction (SPE) method. Analytes in both cases were quantified by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) with electrospray ionization. The advantages offered by SPME in this application are: decreased sample volume requirements, ease of sample processing and extraction, decreased cost, and most importantly, elimination of electrospray matrix effects. Despite having higher limits of quantification (16-1380 ng/L in influent and 35-260 ng/L in effluent), nearly all of the compounds found to be present in Edmonton Gold Bar wastewater by SPE were measurable by SPME (i.e., sulfamethoxazole, trimethoprim, erythromycin, and clarithromycin), with values similar to those obtained using the former method. Limits of quantification for the SPE method for the measured compounds were 4.7-15 ng/L and 0.86-6.1 ng/L for influent and effluent, respectively.  相似文献   

12.
In this study a direct solid-phase microextraction (SPME) procedure has been developed for the determination of carbofuran in water. Experimental parameters such as selection of SPME coating, effect of temperature, effect of salt addition and solvent desorption were studied and optimized. Analytical parameters such as linearity, precision, detection and quantitation limits, and matrix effects for solid-phase extraction (SPE) and SPME methods were evaluated for comparison purposes with the aim of selecting the most appropriate depending on the detection capabilities required. SPE and SPME were followed by high-performance liquid chromatography with diode-array detection, using a 50 x 4.6 mm I.D. guard column and a 150 x 4.6 mm I.D. analytical column, both packed with C18 silica. Both methods can be applied to real samples and give the same results, but SPE allows the detection of lower carbofuran concentrations (0.06 microg/L) as compared to  相似文献   

13.
Takino M  Daishima S  Nakahara T 《The Analyst》2001,126(5):602-608
A method for the determination of six chlorinated phenoxy acid herbicides in river water was developed using in-tube solid-phase microextraction (SPME) followed by liquid chromatography/electrospray ionization-mass spectrometry (LC/ESI-MS). In-tube SPME is an extraction technique for organic compounds in aqueous samples, in which analytes are extracted from a sample directly into an open tubular capillary by repeated draw/eject cycles of the sample solution. Simple mass spectra with strong signals corresponding to [M-H]- and [M-RCOOH]- were observed for all herbicides tested in this study. The best separation of these compounds was obtained with a C18 column using linear gradient elution with a mobile phase of acetonitrile-water containing 5 mmol l-1 dibutylamine acetate (DBA). To optimize the extraction of herbicides, several in-tube SPME parameters were examined. The optimum extraction conditions were 25 draw/eject cycles of 30 microliters of sample in 0.2% formic acid (pH 2) at a flow rate of 200 microliters min-1 using a DB-WAX capillary. The herbicides extracted by the capillary were easily desorbed by 10 microliters acetonitrile. Using in-tube SPME-LC/ESI-MS with time-scheduled selected ion monitoring, the calibration curves of herbicides were linear in the range 0.05-50 ng ml-1 with correlation coefficients above 0.999. This method was successfully applied to the analysis of river water samples without interference peaks. The limit of quantification was in the range 0.02-0.06 ng ml-1 and the limit of detection (S/N = 3) was in the range 0.005-0.03 ng ml-1. The repeatability and reproducibility were in the range 2.5-4.1% and 6.2-9.1%, respectively.  相似文献   

14.
 The solid-phase microextraction (SPME) technique coupled with gas chromatography and atomic emission detection was successfully applied for the determination of selected organometallic species of Pb, As and Hg in aqueous samples. To obtain a high extraction yield, the SPME conditions were optimised for each element by fibre selection and varying the exposure time, stirring rate, pH range and desorption time. All the organometallic compounds tested were extracted from the aqueous phase using SPME. The preconcentration factors attained ranged between 40 and 150, depending on the compound. Detection limits in the pg/L and ng/L ranges were achieved. Received January 18, 2000. Revision April 11, 2000.  相似文献   

15.
A new generation of solid-phase microextraction (SPME) fiber, an internally cooled fiber (cold fiber with polydimethylsiloxane loading) that allows heating the sample matrix and simultaneously cooling the fiber coating, was used to determine 2,4-dichloroanisole, 2,6-dichloroanisole, 2,4,6-trichloroanisole and pentachloroanisole in cork. A comparison between the cold fiber and regular SPME fiber was performed. An automated headspace solid-phase microextraction (HS-SPME) using commercial fibers and an internally cooled SPME fiber (CF-HS-SPME) coupled to gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) was used. The extraction conditions for both CF-HS-SPME and HS-SPME were optimized using full factorial design and Doehlert matrix. The best extraction conditions for CF-HS-SPME were obtained using 10 min of incubation time, 10 min of extraction time, and sample and fiber temperature of 130 and 10 degrees C, respectively. For HS-SPME, polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was used with 10 min of incubation time, 75 min of extraction time, 85 degrees C of sample temperature, 8 ml of water was added and agitated at 500 rpm. The quantification limits for the target compounds using CF-HS-SPME procedure were between 0.8 and 1.6 ng g(-1) of cork, while for HS-SPME were between 4 and 6 ng g(-1) of cork. Furthermore, the CF-HS-SPME procedure could be used as a non-destructive method after minor modification of the agitator for the autosampler.  相似文献   

16.
A simple and sensitive method for the determination of polar pesticides in water and wine samples was developed by coupling automated in-tube solid-phase microextraction (SPME) to high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS). To achieve optimum performance, the conditions for both the in-tube SPME and the ESI-MS detection were investigated. In-tube SPME conditions were optimized by selecting the appropriate extraction parameters, especially the stationary phases used for SPME. For the compounds studied, a custom-made polypyrrole (PPY)-coated capillary showed superior extraction efficiency as compared to several commercial capillaries tested, and therefore, it was selected for in-tube SPME. The influence of the ethanol content on the performance of in-tube SPME was also investigated. It was found that the amount of pesticides extracted decreased with the increase of ethanol content in the solutions. The ESI-MS detection conditions were optimized as follows: nebulizer gas, N2 (30 p.s.i.; 1 p.s.i.=6894.76 Pa); drying gas, N2 (10 l/min, 350 degrees C); capillary voltage, 4500 V; ionization mode, positive; mass scan range, 50-350 amu; fragmentor voltage, variable depending on the ions selected. Due to the high extraction efficiency of the PPY coating and the high sensitive mass detection, the detection limits (S/N = 3) of this method for the compounds studied are in the range of 0.01 to 1.2 ng/ml, which are more than one order of magnitude lower than those of the previous in-tube SPME-HPLC-UV method. A linear relationship was obtained for each analyte in the concentration range of 0.5 to 200 ng/ml with MS detection. This method was applied to the analysis of phenylurea and carbamate pesticides in spiked water and wine samples.  相似文献   

17.
A simple and reliable sample methodology based on simultaneous ultrasonic extraction, sulfuric acid clean-up and headspace solid-phase microextraction (SPME)-gas chromatography-mass spectrometry has been developed as an advantageous analytical tool for the determination of seven polychlorinated biphenyl congeners in bird livers at low levels. The influence of several parameters on the efficiency of the proposed method was systematically investigated. The clean-up efficiency of sulfuric acid treatment was tested and compared with those of column chromatography (Flosiril, silica gel and alumina) and solid-phase extraction (SPE) (Supelclean ENVI-Carb cartridge) procedures. The use of sulfuric acid in the clean-up step prior to headspace solid-phase microextraction analysis allows the removal of interfering matrix compounds present in the liver extracts that would otherwise cause severe ionization suppression of the polychlorinated biphenyls (PCBs) during the ionization process. The optimized method had good linearity (R2>0.99) over the range studied (5-500 ng/g wet weight) and showed satisfactory level of precision, with RSD values lower than 10.6%. The obtained relative recoveries ranged between 63 and 94%. The limits of detection (0.06-0.63 ng/g wet weight) were low enough to check for harmful levels of polychlorinated biphenyls in biological samples, and were well below most of the restrictive limits established by European Union regulations. The method was found to be reliable under the operational conditions proposed and was applied successfully to the analysis of individual polychlorinated biphenyls in liver tissues. The results obtained from five bird species from Greece revealed the presence of the target compounds in all samples analyzed, at levels ranging between 0.54 and 39.45 ng/g wet weight.  相似文献   

18.
《Analytica chimica acta》2004,506(1):71-80
We describe an estimation of measurement uncertainty calculated by the “bottom-up” approach for the determination of the oestrogenic compound nonylphenol in treated water samples by solid-phase extraction (SPE) and solid-phase microextraction (SPME) procedures and GC/MS detection. The results were compared and the different contributions to the uncertainty were evaluated. A study of the linear range was established and validation was performed for both methods using statistical analysis of several indicative parameters. In terms of validation data, precision (R.S.D. values <20%) and trueness (relative error <11%) were obtained for both methods under day-to-day conditions. The results of the estimation of measurement uncertainty obtained for both methods for concentrations higher than 1 μg/l have demonstrated that the time-consuming SPE method has a lower relative uncertainty (32%) than the SPME method (42.8%). The chromatographic uncertainty value was the main factor in the SPME method whereas the recovery factor (used to calculate the concentration) was the main contribution to uncertainty in the SPE method.  相似文献   

19.
A novel analytical method is presented for the determination of chlorophenols in water. This method involves pre-concentration by solid-phase microextraction (SPME) and an external desorption using a micellar medium as desorbing agent. Final analysis of the selected chlorophenols compounds was carried out by high-performance liquid chromatography (HPLC) with diode array detection (DAD). Optimum conditions for desorption, using the non-ionic surfactant polyoxyethylene 10 lauryl ether (POLE), such as surfactant concentration and time were studied. A satisfactory reproducibility for the extraction of target compounds, between 6 and 15%, was obtained, and detection limits were in the range of 1.1-5.9ngmL(-1). The developed method is evaluated and compared with the conventional one using organic solvent as a desorbing agent. The method was successfully applied to the determination of chlorophenols in water samples from different origin. This study has demonstrated that solid-phase microextraction with micellar desorption (SPME-MD) can be used as an alternative to conventional SPME method for the extraction of chlorophenols in water samples.  相似文献   

20.
A gas chromatography-high-resolution mass spectrometry (GC-HRMS) method using solid-phase microextraction (SPME) for the determination of 2,4,6-trichloroanisole (TCA) and 2,4,6-tribromoanisole (TBA) in wine at low ng L(-1) levels was developed. A robust SPME method was developed by optimizing several different parameters, including type of fiber, salt addition, sample volume, extraction and desorption time. The quantification limit for TCA and TBA in wine was lowered substantially using GC-HRMS in combination with the optimized SPME method and allowed the detection of low analyte concentrations (ng L(-1)) with good accuracy. Limits of quantification for red wine of 0.3 ng L(-1) for TCA and 0.2 ng L(-1) for TBA with gas chromatography-negative chemical ionization mass spectrometry and 0.03 ng L(-1) for TCA and TBA were achieved using GC-HRMS. The method was applied to 30 wines of which 4 wines were sensorically qualified as cork defected. TCA was found in three of these wines with concentrations in the range 2-25 ng L(-1). TBA was not detected in any of the samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号