首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulsed flow modulation (PFM) two-dimensional comprehensive gas chromatography (GC x GC) was combined with quadrupole-based mass spectrometry (MS) via a supersonic molecular beam (SMB) interface using a triple-quadrupole system as the base platform, which enabled tandem mass spectrometry (MS-MS). PFM is a simple GC x GC modulator that does not consume cryogenic gases while providing tunable second GC x GC column injection time for enabling the use of quadrupole-based mass spectrometry regardless its limited scanning speed. The 20-ml/min second column flow rate involved with PFM is handled, splitless, by the SMB interface without affecting the sensitivity. The combinations of PFM GC x GC-MS with SMB and PFM GC x GC-MS-MS with SMB were explored with the analysis of diazinon and permethrin in coriander. PFM GC x GC-MS with SMB is characterized by enhanced molecular ion and tailing-free fast ion source response time. It enables universal pesticide analysis with full scan and data analysis with reconstructed single ion monitoring on the enhanced molecular ion and another prominent high mass fragment ion. The elimination of the third fragment ion used in standard three ions method results in significantly reduced matrix interference. GC x GC-MS with SMB improves the GC separation, and thereby our ability for sample identification using libraries. GC-MS-MS with SMB provides better reduction (elimination) of matrix interference than GC x GC-MS. However, it is a target method, which is not always applicable. GC x GC-MS-MS does not seem to further reduce matrix interferences over GC-MS-MS and unlike GC x GC-MS, it is incompatible with library identification, but it is beneficial to have both GC x GC and MS-MS capabilities in the same system.  相似文献   

2.
Comprehensive two-dimensional gas chromatography (GC x GC) is based on a coupling of two GC columns of different characteristics by means of a device that allows portions of the effluent from the primary column to be injected onto the second dimension column for an additional separation. The time available for the separation in the second-dimension column is very short. Thus, this separation should be very efficient. The vast majority of GC x GC practitioners use very narrow bore columns for the second dimension. While this approach is justified in principle, if peaks in the second dimension overload this column, its peak capacity is severely reduced. A series of second-dimension columns of varying internal diameters, but similar phase ratios, were used to study these effects. The results indicate that 250 microm columns often provide comparable second dimension peak widths to 100 microm columns, while at the same time being less prone to overloading, indicating that they may often be a better choice than smaller diameter columns in the second dimension of GC x GC systems.  相似文献   

3.
Two‐dimensional liquid chromatography largely increases the number of separated compounds in a single run, theoretically up to the product of the peaks separated in each dimension on the columns with different selectivities. On‐line coupling of a reversed‐phase column with an aqueous normal‐phase (hydrophilic interaction liquid chromatography) column yields orthogonal systems with high peak capacities. Fast on‐line two‐dimensional liquid chromatography needs a capillary or micro‐bore column providing low‐volume effluent fractions transferred to a short efficient second‐dimension column for separation at a high mobile phase flow rate. We prepared polymethacrylate zwitterionic monolithic micro‐columns in fused silica capillaries with structurally different dimethacrylate cross‐linkers. The columns provide dual retention mechanism (hydrophilic interaction and reversed‐phase). Setting the mobile phase composition allows adjusting the separation selectivity for various polar substance classes. Coupling on‐line an organic polymer monolithic capillary column in the first dimension with a short silica‐based monolithic column in the second dimension provides two‐dimensional liquid chromatography systems with high peak capacities. The silica monolithic C18 columns provide higher separation efficiency than the particle‐packed columns at the flow rates as high as 5 mL/min used in the second dimension. Decreasing the diameter of the silica monolithic columns allows using a higher flow rate at the maximum operation pressure and lower fraction volumes transferred from the first, hydrophilic interaction dimension, into the second, reversed‐phase mode, avoiding the mobile phase compatibility issues, improving the resolution, increasing the peak capacity, and the peak production rate.  相似文献   

4.
The speed of analysis in capillary gas chromatography can be substantially increased by reduction of the column inner diameter. However, special demands are then posed upon instrumental design. In particular, the sampling system is highly critical because it has to be capable of delivering extremely small injection band widths which must be compatible with the column inside diameter. This study focuses on the evaluation of two potentially suitable sample introduction systems with respect to input band width and detection limits and their compatibility with small bore (≦ 100 μm) columns in capillary gas chromatography. One of them allows liquid on-column injection, based on liquid splitting, of only a few nl onto small bore (≦ 100 ?m) fused silica columns. For gases, input band widths as low as 1 ms are obtained with this system. The other one is part of a miniaturized gas chromatograph with extremely low dead volume interfaces and detector volumes. It allows input band widths for gases of a few ms. Without any preconcentration ppm concentrations are measured in gaseous samples with a 80 ?m thick film capillary column. It will be shown that a further reduction of the minimum detectable amount and analysis time is possible with this equipment.  相似文献   

5.
A novel fused silica capillary GC/MS direct coupling is described which ensures quantitative transfer of sample from the point of injection to the ion source of a mass spectrometer without contacting any surfaces other than the column wall. This device permits GC analysis of highly labile substances. Aflatoxin B1, previously considered unassayable by GC, can now be determined by GC/MS.  相似文献   

6.
The use of high-temperature-stable, medium polarity glass capillary columns coated with immobilized PS-090 (a 20 % diphenyl-substituted, CH3O-terminated polydimethylsiloxane) has made it possible to analyze routinely, and with good separation efficiency, high molecular weight compounds such as triglycerides and free base porphyrins. Cold on-column injection was used throughout this work to avoid discrimination against involatile compounds, and disposable (fused silica) retention gaps were used to protect the column against contamination with involatile material. On-column injection into narrow bore glass columns was achieved by using glass-to-silica connections to attach wider bore (0.2 mm i.d.) deactivated fused silica tubing to the columns.  相似文献   

7.
Keshet  Uri  Fialkov  Alexander B.  Alon  Tal  Amirav  Aviv 《Chromatographia》2016,79(11):741-754

We designed and operated a new system of pulsed flow modulation (PFM) two dimensional comprehensive gas chromatography (GC × GC) mass spectrometry (MS). This system is based on the combination of PFM–GC × GC with a quadrupole mass spectrometer of GC–MS via a supersonic molecular beams interface and its fly-through Cold EI ion source and applied this system for the analysis of JP8 jet fuel. PFM is a simple GC × GC modulator that does not consume cryogenic gases while providing tunable second GC × GC column injection time for enabling the use of quadrupole based mass spectrometry regardless its limited scanning speed. We analyzed JP8 jet fuel with our new PFM–GC × GC–MS with Cold EI system and found that as the second dimension GC elution time is increased the observed molecular ion mass is reduced. This unique observation that helped in improved sample compounds identification under co-elution conditions was enabled via having abundant molecular ions in Cold EI for all the fuel compounds. We named this type of analysis as PFM–GC × GC × MS. We found and discuss in this paper that PFM–GC × GC–MS with Cold EI combines improved separation of GC × GC with Cold EI benefits of tailing-free ultra-fast ion source response time and enhanced molecular ions and mass spectral isomer and isotope information for the provision of increased sample identification information.

  相似文献   

8.
A unified approach to sequential gas and supercritical fluid Chromatography using 50 μm i.d. open tubular columns is described. Sample introduction is performed by means of a rotary injection valve. In order that linear velocities can be optimized independently, a second rotary valve in the chromatographic oven is used to direct the flow of column eluate to the flame ionization detector through either fused silica tubing in GC, or a frit restrictor in SFC. Applications of sequential GC-SFC on a 50 μm i.d. open tubular column are demonstrated, and comparisons made between sequential GC-SFC on 50 and 100 μm i.d. columns.  相似文献   

9.
Reduction of the column diameter has proved to be a highly efficient tool to increase the speed of analysis. Unfortunately, the requirements for instrumental design with respect to sample input band width, low dead volume interfacing, and time constants of detection and registration systems are the more critical the smaller the inside diameter. Recently we reported input band widths as low as 1 ms [1] for gaseous samples at ppm concentration levels, without any preconcentration, in a study with narrow bore columns and thermal conductivity detection. In this study a simple versatile micro on-column cold trap/thermodesorption enrichment system for narrow bore columns is introduced and evaluated. The combination of considerable sample enrichment and preservation of the compatibility of the required input band width with column dimensions is critically examined. The process of thermodesorption (reinjection) which is the most critical step, is particularly emphasized. The system consists of a short aluminum coated fused silica or metal capillary with a low mass and a low cost electrical heating. Input band widths down to 1 ms are obtained without extreme demands on electrical power (300 watt). The potential of the system is illustrated with some extremely fast separations.  相似文献   

10.
A gas chromatographic method for volatile organic chemicals in which an aqueous sample is purged directly to a cryogenically cooled, fused silica column uses a Nafion tube drier between the purge vessel and GC column. The Nafion strips water from the gas stream during the purge step while allowing volatile halocarbons and aromatics to continue to the GC column. Examples of this technique are presented on 0.53 mm and 0.25 mm fused silica columns coated with a variety of stationary phases.  相似文献   

11.
A simple flow-switching device has been developed as a differential flow modulator for comprehensive two-dimensional gas chromatography (GC x GC). The device is assembled from tubing, four tee unions, and a solenoid valve. The solenoid valve is located outside the oven of the gas chromatograph and is not in the sample path. The modulation technique has no inherent temperature restrictions and passes 100% of the primary column effluent to the secondary column(s). Secondary peaks are produced with widths at half maximum less than 100 ms when operating in GC x 2GC mode with a 2.0 s modulation period. The efficacy of this approach is demonstrated through the analysis of a standard mixture of volatile organic compounds (VOCs) and diesel fuel.  相似文献   

12.
A major challenge in metabolomics analysis is the accurate quantification of metabolites in the presence of (extremely) high abundant metabolites. Quantification of metabolites at low concentrations can be complicated by co-elution and/or peak distortion when these metabolites elute close to high abundant metabolites. To increase the separation efficiency a comprehensive two-dimensional gas chromatographic-mass spectrometric method (GC x GC-MS) was set up, in which a polar first dimension column and an apolar second dimension column were used to maximize the peak capacity. The feasibility of using wider bore, thicker film columns in the second dimension to improve the mass loadability and inertness of the analytical system was investigated. Several column combinations with varying second dimension column dimensions were compared with a setup with a narrow bore column (0.1mm I.D.) in the second dimension. With a wider bore column (0.32 mm I.D.) in the second dimension the mass loadability was improved 10-fold, and the more inert column surface of the thicker film second dimension column resulted in a more accurate (automated) quantification and improved linearity in the presence of high concentrations of matrix compounds or metabolites. These benefits amply compensated the observed decrease in peak capacity of 40% compared to the narrow bore (0.1mm I.D.) thin film second dimension column. Compared to GC-MS and conventional GC x GC-MS, better performance for quantification of metabolites for typical metabolomics samples was achieved.  相似文献   

13.
Separations of high efficiency and/or speed can be achieved in capillary GC by capillary columns of lower internal diameter (< 50 μm). Sampling techniques for the analytical application of narrow bore fused silica columns have been evaluated with regard to quantitation. On-column injection cannot be applied. Therefore liquid samples have to be vaporized in external devices before they enter the chromatographic system. Sample introduction by syringe with subsequent splitting must and can be applied but requires special syringes with perfect piston sealing because of the high inlet pressures needed even with hydrogen as carrier gas. For general analytical applications, valve systems should be developed to eliminate both the syringe and the septum from instrumental GC set-up's. In SFC using either narrow bore capillary or packed microbore columns, time-controlled valve sampling with partial displacement of the sample from the loop seems to be an adequate technique because of the very high inlet pressures involved. Splitting in combination with valve operation can also be applied in capillary SFC at least to samples of good solubility in the mobile phase. A disadvantage of splitting in SFC is that another restriction for the adjustment of the split flow is necessary.  相似文献   

14.
A new liquid nitrogen (LN2) jet-based thermal modulator for performing comprehensive two-dimensional (2D) gas chromatographic (GC x GC) separations has been designed and constructed. Temperature measurements of the trapping zone, a segment of uncoated fused silica capillary, show that it can be cooled to -196 degrees C in about 300 ms. A film of liquid nitrogen develops on the outside of the trapping capillary even when the oven temperature is in excess of 200 degrees C. Compounds as volatile as propane can be trapped by the modulator and held for periods of at least 1 min without breakthrough. The peak widths for n-alkanes are on the order of 80 ms at half height after passing through an 80cm second dimension column. Repeated analysis of gasoline demonstrated excellent run-to-run reproducibility of the system.  相似文献   

15.
Polymeric polyimide capillary tubing, both uncoated and coated with stationary phases of two polarities, is explored for use as capillary columns for gas chromatography (GC). These glass-free polyimide columns are flexible and their small winding diameter of less than a cm around a solid support makes them compatible for potential use in portable GC instruments. Polyimide columns with dimensions of 0.32 mm i.d. × 3 m are cleaned, annealed at 300°C, and coated using the static method with phenylmethylsilicone (PMS). Separations of volatile organics are investigated isothermally on duplicate sets of polyimide columns by GC with a flame ionization detector using split injection. Unlike the uncoated ones, the coated polyimide columns successfully separate Grob test mix classes of alkanes, amines, and fatty acid methyl esters. The relative standard deviations for retention time and peak area are 0.5 and 2.5 , respectively. With the 3 m PMS-coated column connected to a retention gap to permit operation at its optimum flow rate of 30 cm/s, a plate count of 3200 or plate height of 1 mm is possible. Lack of retention and tailing peaks are evident for the polyimide polymer capillary columns as compared to that of a 3 m commercial cross-linked PMS fused silica capillary. However, headspace analyses of an aromatic hydrocarbon mix and a Clearcoat automotive paint sample are viable applications on the PMS polyimide polymer column.  相似文献   

16.
A multidimensional, on-line coupled liquid chromatographic/gas chromatographic system was developed for the quantification of polycyclic aromatic hydrocarbons (PAHs). A two-dimensional liquid chromatographic system (2D-liquid chromatography (LC)), with three columns having different selectivities, was connected on-line to a two-dimensional gas chromatographic system (2D-gas chromatography (GC)). Samples were cleaned up by combining normal elution and column back-flush of the LC columns to selectively remove matrix constituents and isolate well-defined, PAH enriched fractions. Using this system, the sequential removal of polar, mono/diaromatic, olefinic and alkane compounds from crude extracts was achieved. The LC/GC coupling was performed using a fused silica transfer line into a programmable temperature vaporizer (PTV) GC injector. Using the PTV in the solvent vent mode, excess solvent was removed and the enriched PAH sample extract was injected into the GC. The 2D-GC setup consisted of two capillary columns with different stationary phase selectivities. Heart-cutting of selected PAH compounds in the first GC column (first dimension) and transfer of these to the second GC column (second dimension) increased the baseline resolutions of closely eluting PAHs. The on-line system was validated using the standard reference materials SRM 1649a (urban dust) and SRM 1975 (diesel particulate extract). The PAH concentrations measured were comparable to the certified values and the fully automated LC/GC system performed the clean-up, separation and detection of PAHs in 16 extracts in less than 24 h. The multidimensional, on-line 2D-LC/2D-GC system eliminated manual handling of the sample extracts and minimised the risk of sample loss and contamination, while increasing accuracy and precision.
Figure
Scheme of the 2D-LC/2D-GC system  相似文献   

17.
Capillary isotachophoresis with coupled columns provides efficient means for rapid electrophoretic analysis of sample volumes of up to 10 μl or more. Commercially available instruments are commonly equipped with conductivity and UV absorbance detectors; however, their on-line coupling with electrospray mass spectrometry is highly desirable. In this work we have modified the commercial coupled column isotachophoresis system for direct connection to an ion trap mass spectrometer. The design included attachment of an elution block with a short capillary transfer line directing the separated zones towards the mass spectrometer. The modification further included separation of the injection and electrode blocks from the separation columns by semipermeable membranes eliminating unwanted fluid movements in the wide bore fluoropolymer separation capillaries. Fused silica capillaries with varying internal diameter were connected as a transfer line between the elution block and mass spectrometer. The transfer line served also as the ESI tip of the sheathless electrospray interface. During the analysis the first, wide bore preseparation capillary with 0.8 mm internal diameter served for removal of the bulk sample components and preseparation of the potentially interfering analytes. After the electronic column switching the separation was finished in a 0.3 mm internal diameter capillary and the separated ITP zones were transferred in-line by a spray liquid towards the mass spectrometer. The instrumentation was tested for determination of vitamins in whole blood analysis and separation of tryptic peptides.  相似文献   

18.
An injector designed for automatic direct liquid injection into narrow bore capillary GC columns has been constructed and evaluated. The tip of the syringe needle is aligned with, and positioned close to, the column entrance in a small, pressurized cavity: when the sample is dispensed it is immediately forced into the column by the action of the surrounding carrier gas. A standard autosampler equipped with a standard stainless steel syringe needle was utilized for at-column sample transfer into 100 μm i.d. columns. RSD values for n-alkanes were between 0.1 and 0.3% for relative area counts and approximately 1% for absolute area counts.  相似文献   

19.
Monolithic silica capillary columns were successfully prepared in a fused silica capillary of 530 microm inner diameter and evaluated in HPLC after octadecylsilylation (ODS). Their efficiency and permeability were compared with those of columns pakked with 5-microm and 3-microm ODS-silica particles. The monolithic silica columns having different domain sizes (combined size of through-pore and skeleton) showed 2.5-4.0-times higher permeability (K= 5.2-8.4 x 10(-14) m2) than capillary columns packed with 3-mm particles, while giving similar column efficiency. The monolithic silica capillary columns gave a plate height of about 11-13 microm, or 11 200-13 400 theoretical plates/150 mm column length, in 80% methanol at a linear mobile phase velocity of 1.0 mm/s. The monolithic column having a smaller domain size showed higher column efficiency and higher pressure drop, although the monolithic column with a larger domain size showed better overall column performance, or smaller separation impedance (E value). The larger-diameter (530 microm id) monolithic silica capillary column afforded a good peak shape in gradient elution of proteins at a flow rate of up to 100 microL/min and an injection volume of up to 10 microL.  相似文献   

20.
Robust monolithic silica-based on-chip electro-osmotic micro-pump   总被引:1,自引:0,他引:1  
Nie FQ  Macka M  Barron L  Connolly D  Kent N  Paull B 《The Analyst》2007,132(5):417-424
A robust, compact, on-chip, electro-osmotic micro-pump (EOP) for micro-flow analysis, based on parallel, encased, 10 x 0.1 mm I.D. monolithic silica capillary columns has been developed. A 15 x 40 x 2 mm poly(methyl methacrylate) (PMMA) chip, containing a total of nine parallel EOP systems was fabricated, allowing the use of single, double or triple monolithic columns to produce increased flow as required. The monolithic silica was compatible with both aqueous and organic solvents without swelling or shrinking problems, with the triple column EOP capable of generating flow of up to 0.6 microL min(-1) under zero pressure load and over 0.1 microL min(-1) with an applied pressure of ca. 2.4 bar using an applied voltage of just 2 kV. Current generated at the 2 kV applied voltage for a 2 mM acetate buffer solution (pH 4.5) was under 4 microA, allowing stable, bubble-free flow. The developed triple column EOP was incorporated within a micro-fluidic chip (5.0 x 2.0 x 0.4 cm) integrated with a second single 10 x 0.1 mm column EOP, for combined sample injection and simple on-chip micro-flow analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号