首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tilting theory has been a very important tool in the classification of finite dimensional algebras of finite and tame representation type, as well as, in many other branches of mathematics. Happel (1988) and Cline et al. (J Algebra 304:397–409 1986) proved that generalized tilting induces derived equivalences between module categories, and tilting complexes were used by Rickard (J Lond Math Soc 39:436–456, 1989) to develop a general Morita theory of derived categories. On the other hand, functor categories were introduced in representation theory by Auslander (I Commun Algebra 1(3):177–268, 1974), Auslander (1971) and used in his proof of the first Brauer–Thrall conjecture (Auslander 1978) and later on, used systematically in his joint work with I. Reiten on stable equivalence (Auslander and Reiten, Adv Math 12(3):306–366, 1974), Auslander and Reiten (1973) and many other applications. Recently, functor categories were used in Martínez-Villa and Solberg (J Algebra 323(5):1369–1407, 2010) to study the Auslander–Reiten components of finite dimensional algebras. The aim of this paper is to extend tilting theory to arbitrary functor categories, having in mind applications to the functor category Mod (modΛ), with Λ a finite dimensional algebra.  相似文献   

2.
Polynomials and exponential polynomials play a fundamental role in the theory of spectral analysis and spectral synthesis on commutative groups. Recently several new results have been published in this field [24,6]. Spectral analysis and spectral synthesis has been studied on some types of commutative hypergroups, as well. However, a satisfactory definition of exponential monomials on general commutative hypergroups has not been available so far. In [5,7,8] and [9], the authors use a special concept on polynomial and Sturm–Liouville-hypergroups. Here we give a general definition which covers the known special cases.  相似文献   

3.
We characterize the locally finite networks admitting non-constant harmonic functions of finite energy. Our characterization unifies the necessary existence criteria of Thomassen (J Comb Theory, Ser B 49:87?C102, 1990) and of Lyons and Peres (2011) with the sufficient criterion of Soardi (1991). We also extend a necessary existence criterion for non-elusive non-constant harmonic functions of finite energy due to Georgakopoulos (J Lond Math Soc, 2010).  相似文献   

4.
We study a precise large deviation principle for a stationary regularly varying sequence of random variables. This principle extends the classical results of Nagaev (Theory Probab Appl 14:51–64, 193–208, 1969) and Nagaev (Ann Probab 7:745–789, 1979) for iid regularly varying sequences. The proof uses an idea of Jakubowski (Stoch Proc Appl 44:291–327, 1993; 68:1–20, 1997) in the context of central limit theorems with infinite variance stable limits. We illustrate the principle for stochastic volatility models, real valued functions of a Markov chain satisfying a polynomial drift condition and solutions of linear and non-linear stochastic recurrence equations.  相似文献   

5.
A truly fruitful way to construct finite generalized quadrangles is through the detection of Kantor families in the general 5-dimensional Heisenberg group over some finite field $\mathbb{F}_{q}$ . All these examples are so-called ??flock quadrangles??. Payne (Geom. Dedic. 32:93?C118, 1989) constructed from the Ganley flock quadrangles the new Roman quadrangles, which appeared not to arise from flocks, but still via a Kantor family construction (in some group of the same order as ). The fundamental question then arose as to whether (Payne in Geom. Dedic. 32:93?C118, 1989). Eventually the question was solved in Havas et?al. (Finite geometries, groups, and computation, pp.?95?C102, de Gruyter, Berlin, 2006; Adv. Geom. 26:389?C396, 2006). Payne??s Roman construction appears to be a special case of a far more general one: each flock quadrangle for which the dual is a translation generalized quadrangle gives rise to another generalized quadrangle which is in general not isomorphic, and which also arises from a Kantor family. Denote the class of such flock quadrangles by . In this paper, we resolve the question of Payne for the complete class . In fact we do more??we show that flock quadrangles are characterized by their groups. Several (sometimes surprising) by-products are described in both odd and even characteristic.  相似文献   

6.
In [19], a \(q\) -weighted version of the Robinson–Schensted algorithm was introduced. In this paper, we show that this algorithm has a symmetry property analogous to the well-known symmetry property of the usual Robinson–Schensted algorithm. The proof uses a generalisation of the growth diagram approach introduced by Fomin [58]. This approach, which uses ‘growth graphs’, can also be applied to a wider class of insertion algorithms which have a branching structure, including some of the other \(q\) -weighted versions of the Robinson–Schensted algorithm which have recently been introduced by Borodin–Petrov [2].  相似文献   

7.
In [10] (C R Acad Sci Paris Ser I Math 323(2) 117–120, 1996), [11] (Math Res Lett 10(1):71–83 2003), [12] (Can J Math 57(6):1215–1223 2005), Khare showed that any strictly compatible systems of semisimple abelian mod p Galois representations of a number field arises from a unique finite set of algebraic Hecke characters. In this article, we consider a similar problem for arbitrary global fields. We give a definition of Hecke character which in the function field setting is more general than previous definitions by Goss and Gross and define a corresponding notion of compatible system of mod p Galois representations. In this context we present a unified proof of the analog of Khare’s result for arbitrary global fields. In a sequel we shall apply this result to strictly compatible systems arising from Drinfeld modular forms, and thereby attach Hecke characters to cuspidal Drinfeld Hecke eigenforms.  相似文献   

8.
We establish a connection between optimal transport theory (see Villani in Topics in optimal transportation. Graduate studies in mathematics, vol. 58, AMS, Providence, 2003, for instance) and classical convection theory for geophysical flows (Pedlosky, in Geophysical fluid dynamics, Springer, New York, 1979). Our starting point is the model designed few years ago by Angenent, Haker, and Tannenbaum (SIAM J. Math. Anal. 35:61–97, 2003) to solve some optimal transport problems. This model can be seen as a generalization of the Darcy–Boussinesq equations, which is a degenerate version of the Navier–Stokes–Boussinesq (NSB) equations. In a unified framework, we relate different variants of the NSB equations (in particular what we call the generalized hydrostatic-Boussinesq equations) to various models involving optimal transport (and the related Monge–Ampère equation, Brenier in Commun. Pure Appl. Math. 64:375–417, 1991; Caffarelli in Commun. Pure Appl. Math. 45:1141–1151, 1992). This includes the 2D semi-geostrophic equations (Hoskins in Annual review of fluid mechanics, vol. 14, pp. 131–151, Palo Alto, 1982; Cullen et al. in SIAM J. Appl. Math. 51:20–31, 1991, Arch. Ration. Mech. Anal. 185:341–363, 2007; Benamou and Brenier in SIAM J. Appl. Math. 58:1450–1461, 1998; Loeper in SIAM J. Math. Anal. 38:795–823, 2006) and some fully nonlinear versions of the so-called high-field limit of the Vlasov–Poisson system (Nieto et al. in Arch. Ration. Mech. Anal. 158:29–59, 2001) and of the Keller–Segel for Chemotaxis (Keller and Segel in J. Theor. Biol. 30:225–234, 1971; Jäger and Luckhaus in Trans. Am. Math. Soc. 329:819–824, 1992; Chalub et al. in Mon. Math. 142:123–141, 2004). Mathematically speaking, we establish some existence theorems for local smooth, global smooth or global weak solutions of the different models. We also justify that the inertia terms can be rigorously neglected under appropriate scaling assumptions in the generalized Navier–Stokes–Boussinesq equations. Finally, we show how a “stringy” generalization of the AHT model can be related to the magnetic relaxation model studied by Arnold and Moffatt to obtain stationary solutions of the Euler equations with prescribed topology (see Arnold and Khesin in Topological methods in hydrodynamics. Applied mathematical sciences, vol. 125, Springer, Berlin, 1998; Moffatt in J. Fluid Mech. 159:359–378, 1985, Topological aspects of the dynamics of fluids and plasmas. NATO adv. sci. inst. ser. E, appl. sci., vol. 218, Kluwer, Dordrecht, 1992; Schonbek in Theory of the Navier–Stokes equations, Ser. adv. math. appl. sci., vol. 47, pp. 179–184, World Sci., Singapore, 1998; Vladimirov et al. in J. Fluid Mech. 390:127–150, 1999; Nishiyama in Bull. Inst. Math. Acad. Sin. (N.S.) 2:139–154, 2007).  相似文献   

9.
In this paper we consider two branch and bound algorithms for the maximum clique problem which demonstrate the best performance on DIMACS instances among the existing methods. These algorithms are MCS algorithm by Tomita et al. (2010) and MAXSAT algorithm by Li and Quan (2010a, b). We suggest a general approach which allows us to speed up considerably these branch and bound algorithms on hard instances. The idea is to apply a powerful heuristic for obtaining an initial solution of high quality. This solution is then used to prune branches in the main branch and bound algorithm. For this purpose we apply ILS heuristic by Andrade et al. (J Heuristics 18(4):525–547, 2012). The best results are obtained for p_hat1000-3 instance and gen instances with up to 11,000 times speedup.  相似文献   

10.
Northcott’s book Finite Free Resolutions (1976), as well as the paper (J. Reine Angew. Math. 262/263:205–219, 1973), present some key results of Buchsbaum and Eisenbud (J. Algebra 25:259–268, 1973; Adv. Math. 12: 84–139, 1974) both in a simplified way and without Noetherian hypotheses, using the notion of latent nonzero divisor introduced by Hochster. The goal of this paper is to simplify further the proofs of these results, which become now elementary in a logical sense (no use of prime ideals, or minimal prime ideals) and, we hope, more perspicuous. Some formulations are new and more general than in the references (J. Algebra 25:259–268, 1973; Adv. Math. 12: 84–139, 1974; Finite Free Resolutions 1976) (Theorem 7.2, Lemma 8.2 and Corollary 8.5).  相似文献   

11.
In this paper, we consider a composite iterative algorithm with errors for approximating a common fixed points of non-self asymptotically nonexpansive mappings in the framework of Hilbert spaces. Our results improve and extend Chidume et al. (J. Math. Anal. Appl. 280:364–374, [2003]), Shahzad (Nonlinear Anal. 61:1031–1039, [2005]), Su and Qin (J. Appl. Math. Comput. 24:437–448, [2007]) and many others.  相似文献   

12.
We consider the quintic generalized Korteweg–de Vries equation (gKdV) $$u_t + (u_{xx} + u^5)_x =0,$$ which is a canonical mass critical problem, for initial data in H 1 close to the soliton. In earlier works on this problem, finite- or infinite-time blow up was proved for non-positive energy solutions, and the solitary wave was shown to be the universal blow-up profile, see [16], [26] and [20]. For well-localized initial data, finite-time blow up with an upper bound on blow-up rate was obtained in [18]. In this paper, we fully revisit the analysis close to the soliton for gKdV in light of the recent progress on the study of critical dispersive blow-up problems (see [31], [39], [32] and [33], for example). For a class of initial data close to the soliton, we prove that three scenarios only can occur: (i) the solution leaves any small neighborhood of the modulated family of solitons in the scale invariant L 2 norm; (ii) the solution is global and converges to a soliton as t → ∞; (iii) the solution blows up in finite time T with speed $$\|u_x(t)\|_{L^2} \sim \frac{C(u_0)}{T-t} \quad {\rm as}\, t\to T.$$ Moreover, the regimes (i) and (iii) are stable. We also show that non-positive energy yields blow up in finite time, and obtain the characterization of the solitary wave at the zero-energy level as was done for the mass critical non-linear Schrödinger equation in [31].  相似文献   

13.
The general measurable solution of (A) was found by Stamate [8]. Aczél [3] and Lajkô [6] proved that the general solution of (A) for unknown functions ψ, g, h: ? → ? are (1), (2) and (3), respectively. Filipescu [5] found the general measurable solution of (B). We establish an elementary prof for the general solution of equation (A) (Theorem 1.). Our method is suitable for finding the general solution of (B) (Theorem 2.).  相似文献   

14.
Diffusive relaxation systems provide a general framework to approximate nonlinear diffusion problems, also in the degenerate case (Aregba-Driollet et al. in Math. Comput. 73(245):63–94, 2004; Boscarino et al. in Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit, 2011; Cavalli et al. in SIAM J. Sci. Comput. 34:A137–A160, 2012; SIAM J. Numer. Anal. 45(5):2098–2119, 2007; Naldi and Pareschi in SIAM J. Numer. Anal. 37:1246–1270, 2000; Naldi et al. in Surveys Math. Indust. 10(4):315–343, 2002). Their discretization is usually obtained by explicit schemes in time coupled with a suitable method in space, which inherits the standard stability parabolic constraint. In this paper we combine the effectiveness of the relaxation systems with the computational efficiency and robustness of the implicit approximations, avoiding the need to resolve nonlinear problems and avoiding stability constraints on time step. In particular we consider an implicit scheme for the whole relaxation system except for the nonlinear source term, which is treated though a suitable linearization technique. We give some theoretical stability results in a particular case of linearization and we provide insight on the general case. Several numerical simulations confirm the theoretical results and give evidence of the stability and convergence also in the case of nonlinear degenerate diffusion.  相似文献   

15.
The weak Galerkin finite element method is a novel numerical method that was first proposed and analyzed by Wang and Ye (2011) for general second order elliptic problems on triangular meshes. The goal of this paper is to conduct a computational investigation for the weak Galerkin method for various model problems with more general finite element partitions. The numerical results confirm the theory established in Wang and Ye (2011). The results also indicate that the weak Galerkin method is efficient, robust, and reliable in scientific computing.  相似文献   

16.
Recently, the weight distributions of the duals of the cyclic codes with two zeros have been obtained for several cases in Ding et al. (IEEE Trans Inform Theory 57(12), 8000–8006, 2011); Ma et al. (IEEE Trans Inform Theory 57(1):397–402, 2011); Wang et al. (Trans Inf Theory 58(12):7253–7259, 2012); and Xiong (Finite Fields Appl 18(5):933–945, 2012). In this paper we use the method developed in Xiong (Finite Fields Appl 18(5):933–945, 2012) to solve one more special case. We make extensive use of standard tools in number theory such as characters of finite fields, the Gauss sums and the Jacobi sums. The problem of finding the weight distribution is transformed into a problem of evaluating certain character sums over finite fields, which turns out to be associated with counting the number of points on some elliptic curves over finite fields. We also treat the special case that the characteristic of the finite field is 2.  相似文献   

17.
Final polynomials and final syzygies provide an explicit representation of polynomial identities promised by Hilbert’s Nullstellensatz. Such representations have been studied independently by Bokowski [2,3,4] and Whiteley [23,24] to derive invariant algebraic proofs for statements in geometry. In the present paper we relate these methods to some recent developments in computational algebraic geometry. As the main new result we give an algorithm based on B. Buchberger’s Gröbner bases method for computing final polynomials and final syzygies over the complex numbers. Degree upper bound for final polynomials are derived from theorems of Lazard and Brownawell, and a topological criterion is proved for the existence of final syzygies. The second part of this paper is expository and discusses applications of our algorithm to real projective geometry, invariant theory and matrix theory.  相似文献   

18.
We study a class of Steffensen-type algorithm for solving nonsmooth variational inclusions in Banach spaces. We provide a local convergence analysis under ω-conditioned divided difference, and the Aubin continuity property. This work on the one hand extends the results on local convergence of Steffensen’s method related to the resolution of nonlinear equations (see Amat and Busquier in Comput. Math. Appl. 49:13–22, 2005; J. Math. Anal. Appl. 324:1084–1092, 2006; Argyros in Southwest J. Pure Appl. Math. 1:23–29, 1997; Nonlinear Anal. 62:179–194, 2005; J. Math. Anal. Appl. 322:146–157, 2006; Rev. Colomb. Math. 40:65–73, 2006; Computational Theory of Iterative Methods, 2007). On the other hand our approach improves the ratio of convergence and enlarges the convergence ball under weaker hypotheses than one given in Hilout (Commun. Appl. Nonlinear Anal. 14:27–34, 2007).  相似文献   

19.
The general surface group conjecture asks whether a one-relator group where every subgroup of finite index is again one-relator and every subgroup of infinite index is free (property IF) is a surface group. We resolve several related conjectures given in Fine et al. (Sci Math A 1:1–15, 2008). First we obtain the Surface Group Conjecture B for cyclically pinched and conjugacy pinched one-relator groups. That is: if G is a cyclically pinched one-relator group or conjugacy pinched one-relator group satisfying property IF then G is free, a surface group or a solvable Baumslag–Solitar Group. Further combining results in Fine et al. (Sci Math A 1:1–15, 2008) on Property IF with a theorem of Wilton (Geom Topol, 2012) and results of Stallings (Ann Math 2(88):312–334, 1968) and Kharlampovich and Myasnikov (Trans Am Math Soc 350(2):571–613, 1998) we show that Surface Group Conjecture C proposed in Fine et al. (Sci Math A 1:1–15, 2008) is true, namely: If G is a finitely generated nonfree freely indecomposable fully residually free group with property IF, then G is a surface group.  相似文献   

20.
In this paper, a parametric algorithm is introduced for computing all eigenvalues for two Eigenvalue Complementarity Problems discussed in the literature. The algorithm searches a finite number of nested intervals \([\bar{l}, \bar{u}]\) in such a way that, in each iteration, either an eigenvalue is computed in \([\bar{l}, \bar{u}]\) or a certificate of nonexistence of an eigenvalue in \([\bar{l}, \bar{u}]\) is provided. A hybrid method that combines an enumerative method [1] and a semi-smooth algorithm [2] is discussed for dealing with the Eigenvalue Complementarity Problem over an interval \([\bar{l}, \bar{u}]\) . Computational experience is presented to illustrate the efficacy and efficiency of the proposed techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号