首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Kühl O  Blaurock S 《Inorganic chemistry》2004,43(21):6543-6545
The reaction of the unsymmetric bisphosphanyl urea ligand P(OC(6)H(3)Bu(t)(2)-2,4)(2)N(Me)C(O)N(Me)PPh(2) with [Pd(cod)Cl(2)] (cod = 1,5-cyclooctadiene) results in the chiral palladacycle (R,S)(A2)-[Pd(kappa(2)-P,P-[P(OC(6)H(3)Bu(t)(2)-2,4)(2)N(Me)C(O)N(Me)PPh(2)]Cl(2)]. The chirality of the title compound is caused by the tilting of the central, six-membered PdP(2)N(2)C ring along one of the two P-N vectors and comprises two chiral planes and one chiral axis.  相似文献   

3.
Typical cis-PtA(2)G(2) models of key DNA lesions formed by cis-type Pt anticancer drugs are very dynamic and difficult to characterize (A(2) = diamine or two amines; G = guanine derivative). Retro models have A(2) carrier ligands designed to decrease dynamic motion without eliminating any of three possible conformers with bases oriented head-to-tail (two: DeltaHT and LambdaHT) or head-to-head (one: HH). All three were found in NMR studies of eight Me(2)DABPtG(2) retro models (Me(2)DAB = N,N'-dimethyl-2,3-diaminobutane with S,R,R,S and R,S,S,R configurations at the chelate ring N, C, C, and N atoms, respectively; G = 5'-GMP, 3'-GMP, 5'-IMP, and 3'-IMP). The bases cant to the left (L) in (S,R,R,S)-Me(2)DABPtG(2) adducts and to the right (R) in (R,S,S,R)-Me(2)DABPtG(2) adducts. Relative to the case in which the bases are both not canted, canting will move the six-membered rings closer in to each other ("6-in" form) or farther out from each other ("6-out" form). Interligand interactions between ligand components near to Pt (first-first sphere communication = FFC) or far from Pt (second-sphere communication = SSC) influence stability. In typical cases at pH < 8, the "6-in" form is favored, although the larger six-membered rings of the bases are close. In minor "6-out" HT forms, the proximity of the smaller five-membered rings could be sterically favorable. Also, G O6 is closer to the sterically less demanding NH part of the Me(2)DAB ligand, possibly allowing G O6-NH hydrogen bonding. These favorable FFC effects do not fully compensate for possibly stronger FFC dipole effects in the "6-in" form. SSC, phosphate-N1H cis G interactions favor LambdaHT forms in 5'-GMP and 5'-IMP complexes and DeltaHT forms in 3'-GMP and 3'-IMP complexes. When SSC and FFC favor the same HT conformer, it is present at >90% abundance. In six adducts [four (S,R,R,S)-Me(2)DABPtG(2) and (R,S,S,R)-Me(2)DABPtG(2) (G = 3'-GMP and 3'-IMP)], the minor "6-out" HT form at pH approximately 7 becomes the major form at pH approximately 10, where G N1H is deprotonated, because the large distance between the negatively charged N1 atoms minimizes electrostatic repulsion and probably because the G O6-(NH)Me(2)DAB H-bond (FFC) is strengthened by N1H deprotonation. At pH approximately 10, phosphate-negative N1 repulsion is an unfavorable SSC term. This factor disfavors the LambdaHT R form of two (R,S,S,R)-Me(2)DABPtG(2) (G = 5'-GMP and 5'-IMP) adducts to such an extent that the "6-in" DeltaHT R form remains the dominant form even at pH approximately 10.  相似文献   

4.
Wozniak M  Nowogrocki G 《Talanta》1979,26(12):1135-1141
The acids under study differed from one another in length of the carbon chain [N + H(3)(CH(2))(n)PO(3)H(-) for n = 1, 2, 3], substitution on the nitrogen atom [R(1)R(2)N + HCH(2)PO(3)H(-) for R(1) = H; R(2) = Me, Et and R(1) = R(2)= Me, Et] or extent of branching on the carbon atom adjacent to functional groups [N + H(3)CR(3)R(4)PO(3)H(-) for R(3) = H; R(4) = Me, Et, nPr, iPr, nBu and R(3) = R(4) = Me]. Acidity constants and overall stability constants of complexes formed with Ca(II), Mg(II), Co(II), Ni(II), Cu(II), Zn(II) were obtained with the multiparametric refinement programs MUPROT and MUCOMP, applied to potentiometric data, obtained at 25 degrees , in a 0.1M potassium nitrate medium. In the most general case, the existing species are MHA(+), MA, M(OH)A(-), MH(2)A(2), MHA(-)(2) and MA(2-)(2), where A(2-) stands for the fully ionized ligand; preliminary examination of results points out some predominant microscopic forms.  相似文献   

5.
Reaction of Me(4)DACH (6-dimethylamino-1,4,6-trimethyl-1,4-diazacycloheptane) with Ti(N(t)Bu)Cl(2)(py)(3) or Ti(N(t)Bu)Cl(2)(NHMe(2))(2) gave Ti(N(t)Bu)(Me(4)DACH)Cl(2) (1) which in CD(2)Cl(2) solution exists as a mixture of trans and cis isomers (defined with respect to the imido ligand and the exocyclic NMe(2) donor of Me(4)DACH). Aryl imido analogues of 1 were prepared from Ti(NAr)Cl(2)(NHMe(2))(2) and Me(4)DACH forming Ti(NAr)(Me(4)DACH)Cl(2) (Ar = 2,6-C(6)H(3)Me(2) (2), 2,6-C(6)H(3)(i)Pr(2) (3), 2-C(6)H(4)(t)Bu (4), 2-C(6)H(4)CF(3) (5)) which also exist as isomers in solution. The activation parameters for the interconversion of trans- and cis-3were measured by VT NMR spectroscopy. The solid state structures of trans-1, 3 and and cis-2 have been determined. In the presence of MAO or dried MAO the compounds 1-5 act as moderatley productive ethylene polymerisation catalysts, with a modest productivity gain found on moving from the 1/MAO to 1/dried MAO catalyst system.  相似文献   

6.
Most simple cis-PtA2G2 complexes that model the G-G cross-link DNA lesions caused by the clinically used anticancer drug cis-PtCl2(NH3)2 undergo large fluxional motions at a rapid rate (A2 = two amines or a diamine; G = guanine derivative). The carrier amine ligands in active compounds have NH groups, but the fundamental role of the NH groups has been obscured by the dynamic motion. To assess carrier ligand effects, we examine retro models, cis-PtA2G2 complexes, in which dynamic motion has been reduced by the incorporation of steric bulk into the carrier ligands. In this study we introduce a new approach employing the chirality-neutral chelate (CNC) ligand, Me2ppz (N,N'-dimethylpiperazine). Because they lie in the Pt coordination plane, the methyl groups of Me2ppz do not clash with the 06 of the base of G ligands in the ground state, but such clashes sterically hinder dynamic motion. NMR spectroscopy provided conclusive evidence that Me2ppzPt(GMP)2 complexes (GMP = 5'- and 3'-GMP) exist as a slowly interconverting mixture of two dominant head-to-tail (HT) conformers and a head-to-head (HH) conformer. Since the absence of carrier ligand chirality precluded using NMR methods to determine the absolute conformation of the two HT conformers, we used our recently developed CD pH jump method to establish chirality. The most abundant HT Me2ppzPt(5'-GMP)2 form had A chirality. Previously this chirality was shown to be favored by phosphate-cis G NIH hydrogen-bonding interligand interactions; such interactions also favor the HT conformers over the HH conformer. For typical carrier ligands, G O6 and phosphate interactions with the carrier ligand NH groups also favor the HT forms. These latter interactions are absent in Me2ppzPt(GMP)2 complexes, but the HT forms are still dominant. Nevertheless, we do find the first evidence for an HH form of a simple cis-PtA2G2 model with A2 lacking any NH groups. In previous studies, the absence of the HH conformer in cis-PtA2G2 complexes lacking carrier NH groups may be due to the presence of out-of-plane carrier ligand bulk. Such bulk forces both G O6-G O6 and G O6-carrier ligand clashes, thereby disfavoring the HH form. The major DNA cross-link adduct has the HH conformation. Thus, for anticancer activity, the small bulk of the NH group may be more important than the H-bonding interaction.  相似文献   

7.
Complexes [Ir(Cp*)Cl(n)(NH2Me)(3-n)]X(m) (n = 2, m = 0 (1), n = 1, m = 1, X = Cl (2a), n = 0, m = 2, X = OTf (3)) are obtained by reacting [Ir(Cp*)Cl(mu-Cl)]2 with MeNH2 (1:2 or 1:8) or with [Ag(NH2Me)2]OTf (1:4), respectively. Complex 2b (n = 1, m = 1, X = ClO 4) is obtained from 2a and NaClO4 x H2O. The reaction of 3 with MeC(O)Ph at 80 degrees C gives [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(NH2Me)]OTf (4), which in turn reacts with RNC to give [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(CNR)]OTf (R = (t)Bu (5), Xy (6)). [Ir(mu-Cl)(COD)]2 reacts with [Ag{N(R)=CMe2}2]X (1:2) to give [Ir{N(R)=CMe2}2(COD)]X (R = H, X = ClO4 (7); R = Me, X = OTf (8)). Complexes [Ir(CO)2(NH=CMe2)2]ClO4 (9) and [IrCl{N(R)=CMe2}(COD)] (R = H (10), Me (11)) are obtained from the appropriate [Ir{N(R)=CMe2}2(COD)]X and CO or Me4NCl, respectively. [Ir(Cp*)Cl(mu-Cl)]2 reacts with [Au(NH=CMe2)(PPh3)]ClO4 (1:2) to give [Ir(Cp*)(mu-Cl)(NH=CMe2)]2(ClO4)2 (12) which in turn reacts with PPh 3 or Me4NCl (1:2) to give [Ir(Cp*)Cl(NH=CMe2)(PPh3)]ClO4 (13) or [Ir(Cp*)Cl2(NH=CMe2)] (14), respectively. Complex 14 hydrolyzes in a CH2Cl2/Et2O solution to give [Ir(Cp*)Cl2(NH3)] (15). The reaction of [Ir(Cp*)Cl(mu-Cl)]2 with [Ag(NH=CMe2)2]ClO4 (1:4) gives [Ir(Cp*)(NH=CMe2)3](ClO4)2 (16a), which reacts with PPNCl (PPN = Ph3=P=N=PPh3) under different reaction conditions to give [Ir(Cp*)(NH=CMe2)3]XY (X = Cl, Y = ClO4 (16b); X = Y = Cl (16c)). Equimolar amounts of 14 and 16a react to give [Ir(Cp*)Cl(NH=CMe2)2]ClO4 (17), which in turn reacts with PPNCl to give [Ir(Cp*)Cl(H-imam)]Cl (R-imam = N,N'-N(R)=C(Me)CH2C(Me)2NHR (18a)]. Complexes [Ir(Cp*)Cl(R-imam)]ClO4 (R = H (18b), Me (19)) are obtained from 18a and AgClO4 or by refluxing 2b in acetone for 7 h, respectively. They react with AgClO4 and the appropriate neutral ligand or with [Ag(NH=CMe2)2]ClO4 to give [Ir(Cp*)(R-imam)L](ClO4)2 (R = H, L = (t)BuNC (20), XyNC (21); R = Me, L = MeCN (22)) or [Ir(Cp*)(H-imam)(NH=CMe2)](ClO4)2 (23a), respectively. The later reacts with PPNCl to give [Ir(Cp*)(H-imam)(NH=CMe2)]Cl(ClO4) (23b). The reaction of 22 with XyNC gives [Ir(Cp*)(Me-imam)(CNXy)](ClO4)2 (24). The structures of complexes 15, 16c and 18b have been solved by X-ray diffraction methods.  相似文献   

8.
The tris(arylthiolate)indium(III) complexes (4-RC(6)H(4)S)(3)In [R = H (5), Me (6), F (7)] were prepared from the 2:3 reaction of elemental indium and the corresponding aryl disulfide in methanol. Reaction of 5-7 with 2 equiv of the appropriate triorganylphosphine in benzene or toluene resulted in isolation of the indium-phosphine adduct series (4-RC(6)H(4)S)(3)In.PR'(3) [R = H, R' = Et (5a), Cy (5b), Ph (5c); R = Me, R' = Et (6a), Cy (6b), Ph (6c); R = F, R' = Et (7a), Cy (7b), Ph (7c)]. These compounds were characterized via elemental analysis, FT-IR, FT-Raman, solution (1)H, (13)C{(1)H}, (31)P{(1)H}, and (19)F (7a-c) NMR spectroscopy, and X-ray crystallography (5c, 6a, 6c, and 7a). NMR spectra show retention of the In-P bond in benzene-d(6) solution, with phosphine (31)P{(1)H} signals shifted downfield compared to the uncoordinated ligand. The X-ray structures show monomeric 1:1 adduct complexes in all cases. The In-P bond distance [2.5863(5)-2.6493(12) A] is influenced significantly by the phosphine substituents but is unaffected by the substituted phenylthiolate ligand. Relatively low melting points (88-130 degrees C) are observed for all adducts, while high-temperature thermal decomposition is observed for the indium thiolate reactants 5-7. DSC/TGA and EI-MS data show a two-step thermal decomposition process, involving an initial loss of the phosphine moiety followed by loss of thiolate ligand.  相似文献   

9.
The syntheses of the chloro complexes [Ru(eta5-C5R5)Cl(L)] (R = H, Me; L = phosphinoamine ligand) (1a-d) have been carried out by reaction of [(eta5-C5H5)RuCl(PPh3)2] or {(eta5-C5Me5)RuCl}4 with the corresponding phosphinoamine (R,R)-1,2-bis((diisopropylphosphino)amino)cyclohexane), R,R-dippach, or 1,2-bis(((diisopropylphosphino)amino)ethane), dippae. The chloride abstraction reactions from these compounds lead to different products depending on the starting chlorocomplex and the reaction conditions. Under argon atmosphere, chloride abstraction from [(eta5-C5Me5)RuCl(R,R-dippach)] with NaBAr'4 yields the compound [(eta5-C5Me5)Ru(kappa3P,P'-(R,R)-dippach)][BAr'4] (2b) which exhibits a three-membered ring Ru-N-P by a new coordination form of this phosphinoamine. However, under the same conditions the reaction starting from [(eta5-C5Me5)RuCl(dippae)] yields the unsaturated 16 electron complex [(eta5-C5Me5)Ru(dippae)][BAr'4] (2d). The bonding modes of R,R-dippach and dippae ligands have been analyzed by DFT calculations. The possibility of tridentate P,N,P-coordination of the phosphinoamide ligand to a fragment [(eta5-C5Me5)Ru]+ is always present, but only the presence of a cyclohexane unit in the ligand framework converts this bonding mode in a more favorable option than the usual P,P-coordination. Dinitrogen [(eta5-C5R5)Ru(N2)(L)][BAr'4] (3a-d) and dioxygen complexes [(eta5-C5H5)Ru(O2)(R,R-dippach)][BPh4] (4a) and [(eta5-C5Me5)Ru(O2)(L)][BPh4] (4b,d) have been prepared by chloride abstraction under dinitrogen or dioxygen atmosphere, respectively. The presence of 16 electron [(eta5-C5H5)Ru(R,R-dippach)]+ species in fluorobenzene solutions of the corresponding dinitrogen or dioxygen complexes in conjunction with the presence of [BAr'4]- gave in some cases a small fraction of [Ru(eta5-C5H5)(eta6-C6H5F)][BAr'4] (5a), which has been isolated and characterized by X-ray diffraction.  相似文献   

10.
The Cr(NH(3))(5)(py)(3+) ion has been obtained by metathesis of Cr(NH(3))(5)(Me(2)SO)(3+) in pyridine, isolated as the perchlorate salt, and characterized by absorption (lambda(max) at 467, 352, and 260 nm) and emission spectra (lambda(max) at 668 nm, tau = 2.0 &mgr;s at 20 degrees C in water) and by the py aquation rate (k = 5 x 10(-)(4) s(-)(1) at 80 degrees C). Ligand-field (LF) band irradiation in acid aqueous solution (10(-)(2) M HClO(4)) induces photoaquation of py (Phi = 0.26) and NH(3) (Phi = 0.16). HPLC indicates that the latter reaction gives rise to both cis- and trans-Cr(NH(3))(4)(py)(H(2)O)(3+), with the predominance of the cis isomer. This is the first Cr(NH(3))(5)X(z+)() species where Phi(x) > Phi(NH)3: the result is compared with the predictions of various photolysis models and is taken as chemical evidence for pi-acceptance by the py ligand. The photostereochemistry is also discussed. The phosphorescence is totally quenched by Cr(C(2)O(4))(3)(3)(-) (k(q) = 2.7 x 10(9) M(-)(1) s(-)(1)), while the photoreactions are only in part. On 470-nm excitation, the Phi(py)/Phi(NH)()3 ratio is approximately 1 and approximately 2 for the unquenchable and the quenchable contributions, respectively. Such a difference, suggesting at least two reactive precursors, can be interpreted in terms of the photochemistry proceeding from either the lowest doublet and quartet excited states or, alternatively, from the (4)E and (4)B(2) states. Irradiation of the very distinct absorption of coordinated pyridine results in both doublet-state emission and loss of py and NH(3). Comparison of this photobehavior with the LF results gives an efficiency of 0.7 for conversion of the py-localized pipi states into the Cr-localized LF states, confirmed by the wavelength dependence of the relative emission yields. Some py release (Phi = 0.03) is concluded to originate in the pipi states.  相似文献   

11.
We present here two ligand classes based on a bis(pyrazolyl)methane scaffold functionalized with a rigid (-Ph-S-Ph) or flexible (-CH(2)-S-Ph) thioether function: L(R)PhS (R = H, Me) and L(R)CH(2)S (R = H, Me, iPr). The X-ray molecular structures of Ag(I) and Cu(I) binary complexes with L(R)PhS or L(R)CH(2)S using different types of counterions (BF(4)(-), PF(6)(-), and CF(3)SO(3)(-)) are reported. In these complexes, the ligands are N(2) bound on a metal center and bridge on a second metal with the thioether group. In contrast, when using triphenylphosphine (PPh(3)) as an ancillary ligand, mononuclear ternary complexes [M(L)PPh(3)](+) (M = Cu(I), Ag(I); L = L(R)PhS, L(R)CH(2)S) are formed. In these complexes, the more flexible ligand type, L(R)CH(2)S, is able to provide the N(2)S chelation, whereas the more rigid L(R)PhS ligand class is capable of chelating only N(2) because the thioether function preorganized, as it did in the coordination polymers, to point away from the metal center. Rigid potential-energy surface scans were performed by means of density functional theory (DFT) calculations (B3LYP/6-31+G) on the two representative ligands, L(H)PhS and L(H)CH(2)S. The surface scans proved that the thioether function is preferably oriented on the opposite side of the bispyrazole N(2) chelate system. These results confirm that both ligand classes are suitable components for the construction of coordination polymers. Nevertheless, the methylene group that acts as a spacer in L(H)CH(2)S imparts an inherent flexibility to this ligand class so that the conformation responsible for the N(2)S chelation is energetically accessible.  相似文献   

12.
cis-[PtA2(nucleotide)2] complexes (A2 stands for two amines or a diamine) have been extensively investigated as model compounds for key cisplatin-DNA adducts. All cis-[metal(nucleotide/nucleoside)2] complexes with guanine and related purines characterized in the solid state thus far have the DeltaHT conformation (head-to-tail orientation of the two bases and right-handed chirality). In sharp contrast, the LambdaHT conformation (left-handed chirality) dominates in acidic and neutral aqueous solutions of cis-[PtA2(5'-GMP)2] complexes. Molecular models and solution experiments indicate that the LambdaHT conformer is stabilized by 5'-phosphate/N1H hydrogen-bond interactions between cis nucleotides with the normal anti conformation. However, this evidence, while compelling, is indirect. At last, conditions have been defined to allow crystallization of this elusive conformer. The structure obtained reveals three unique features not present in all other cis-[PtA2(nucleotide)2] solid-state structures: a LambdaHT conformation, very strong hydrogen-bond interactions between the phosphate and N1H of cis nucleotides, and a very small dihedral angle between the planes of the two guanines lying nearly perpendicular to the coordination plane. These new results indicate that, because there are no local base-base repulsions precluding the LambdaHT conformer, global forces rather than local interactions account for the predominance of the DeltaHT conformer over the LambdaHT conformer in the solid state and in both inter- and intrastrand HT crosslinks of oligonucleotides and DNA.  相似文献   

13.
Alkylzinc complexes, (Ttz(R,Me))ZnR' (R = tBu, Ph; R' = Me, Et), show interesting reactivity with acids, bases and water. With acids (e.g. fluorinated alcohols, phenols, thiophenol, acetylacetone, acetic acid, HCl and triflic acid) zinc complexes of the conjugate base (CB), (Ttz(R,Me))ZnCB, are generated. Thus the B-N bonds in Ttz ligands are acid stable. (Ttz(R,Me))ZnCB complexes were characterized by (1)H, (13)C-NMR, IR, MS, elemental analysis, and, in most cases, single crystal X-ray diffraction. The four coordinate crystal structures included (Ttz(R,Me))Zn(CB) [where R = Ph, CB (conjugate base) = OCH(2)CF(3) (2), OPh (6), SPh (8), p-OC(6)H(4)(NO(2)) (10); R = tBu, CB = OCH(CF(3))(2) (3), OPh (5), SPh (7)*, p-OC(6)H(4)(NO(2)) (9) (* indicates a rearranged Ttz ligand)]. The use of bidentate ligands resulted in structures [(Ttz(Ph,Me))Zn(CB) (CB = acac (12), OAc (14))] in which the coordination geometries are five, and intermediate between four and five, respectively. Interestingly, three forms of (Ttz(Ph,Me))Zn(p-OC(6)H(4)(NO(2))) (10) were analyzed crystallographically including a Zn coordinated water molecule in 10(H(2)O), a coordination polymer in 10(CP), and a p-nitrophenol molecule hydrogen bonded to a triazole ring in 10(Nit). Ttz ligands are flexible since they are capable of providing κ(3) or κ(2) metal binding and intermolecular interactions with either a metal center or H through the four position nitrogen (e.g. in 10(CP) and HTtz(tBu,Me)·H(2)O, respectively). Preliminary kinetic studies on the protonolysis of LZnEt (L = Ttz(tBu,Me), Tp(tBu,Me)) with p-nitrophenol in toluene at 95 °C show that these reactions are zero order in acid and first order in the LZnEt.  相似文献   

14.
[Sm(Tp(Me2)(2)(kappa(2)-S(2)CNR(2))] compounds (R = Et (1), Me (2); Tp(Me2) = HB(3,5-Me2pz)(3)) have been isolated from reaction of (R(2)NC(S)S)(2) with 2 equiv of [Sm(Tp(Me2)(2)]. Reductive cleavage of 2,2'-dipyridyl disulfide or 2,2'-dipyridyl diselenide by [Sm(Tp(Me2)(2)] afforded good yields of [Sm(Tp(Me2)(2)(kappa(2)-Y)] compounds (Y = 2-SC(5)H(4)N (3), 2-SeC(5)H(4)N (4)). 4 is the first selenopyridine complex of an f-block element. Sm(Tp(Me2)(2)(2-OC(5)H(4)N) (5) has been synthesized by salt metathesis of [Sm(Tp(Me2)(2)Cl] with the sodium salt of the 2-hydroxypyridine. The solid-state structures of 1, 3, 4, and 5 were determined by single-crystal X-ray diffraction analysis and revealed that the compounds are all eight-coordinate with dodecahedral geometry. The samarium atoms are bound in tridentate fashion to two pyrazolylborate ligands and in bidentate fashion by the third ligand. The solution behavior of the compounds was studied by (1)H NMR techniques. (1)H-(1)H exchange spectroscopy experiments give evidence for two distinct dynamic regimes occurring in solution.  相似文献   

15.
Deoxygenations of (silox)(3)WNO (12) and R(3)PO (R = Me, Ph, (t)Bu) by M(silox)(3) (1-M; M = V, NbL (L = PMe(3), 4-picoline), Ta; silox = (t)Bu(3)SiO) reflect the consequences of electronic effects enforced by a limiting steric environment. 1-Ta rapidly deoxygenated R(3)PO (23 degrees C; R = Me (DeltaG degrees (rxn)(calcd) = -47 kcal/mol), Ph) but not (t)Bu(3)PO (85 degrees, >2 days), and cyclometalation competed with deoxygenation of 12 to (silox)(3)WN (11) and (silox)(3)TaO (3-Ta; DeltaG degrees (rxn)(calcd) = -100 kcal/mol). 1-V deoxygenated 12 slowly and formed stable adducts (silox)(3)V-OPR(3) (3-OPR(3)) with OPR(3). 1-Nb(4-picoline) (S = 0) and 1-NbPMe(3) (S = 1) deoxygenated R(3)PO (23 degrees C; R = Me (DeltaG degrees (rxn)(calcd from 1-Nb) = -47 kcal/mol), Ph) rapidly and 12 slowly (DeltaG degrees (rxn)(calcd) = -100 kcal/mol), and failed to deoxygenate (t)Bu(3)PO. Access to a triplet state is critical for substrate (EO) binding, and the S --> T barrier of approximately 17 kcal/mol (calcd) hinders deoxygenations by 1-Ta, while 1-V (S = 1) and 1-Nb (S --> T barrier approximately 2 kcal/mol) are competent. Once binding occurs, significant mixing with an (1)A(1) excited state derived from population of a sigma-orbital is needed to ensure a low-energy intersystem crossing of the (3)A(2) (reactant) and (1)A(1) (product) states. Correlation of a reactant sigma-orbital with a product sigma-orbital is required, and the greater the degree of bending in the (silox)(3)M-O-E angle, the more mixing energetically lowers the intersystem crossing point. The inability of substrates EO = 12 and (t)Bu(3)PO to attain a bent 90 degree angle M-O-E due to sterics explains their slow or negligible deoxygenations. Syntheses of relevant compounds and ramifications of the results are discussed. X-ray structural details are provided for 3-OPMe(3) (90 degree angle V-O-P = 157.61(9) degrees), 3-OP(t)Bu(3) ( 90 degree angle V-O-P = 180 degrees ), 1-NbPMe(3), and (silox)(3)ClWO (9).  相似文献   

16.
The reaction between [Fe(III)(dmf)(6)](ClO(4))(3) and the ligand S-methyl-1-phenyl-isothiosemicarbazide, H(2)[L(Me)], and triethylamine (1:3:6) in methanol under an argon blanketing atmosphere at elevated temperatures (reflux) yields a purple solution from which upon cooling to 20 degrees C dark green crystals of [Fe(III)(L(Me)(*))(2)(SCH(3))] (1) were obtained in 15% yield. From a similar reaction mixture using FeCl(3) as starting material in the solvent acetone under anaerobic conditions at -80 degrees C, dark green crystals of [Fe(III)(L(Me)(*))(2)Cl] (2) were obtained in 21% yield. The structures of complexes 1 and 2 have been determined by single-crystal X-ray crystallography at 100 K. Both complexes are five-coordinate square base pyramidal ferric species containing two N,N-coordinated, monoanionic pi radicals, (L(Me)(*))(1)(-), of the parent S-methyl-1-phenyl-isothiosemicarbazide(2-) dianion in the basal positions whereas the axial position is occupied by methylthiolate in 1 and chloride in 2, respectively. The electronic structure of both species has been elucidated by their electronic spectra, magnetic properties, and X-band EPR and M?ssbauer spectra. Both possess an S(t) = (1)/(2) ground state which is attained via an antiferromagnetic coupling between the spins of an intermediate spin ferric ion (S(Fe) = (3)/(2)) and two ligand pi radical anions (S(rad) = (1)/(2)).  相似文献   

17.
The highly distorted Pt(d(G*pG*)) (G* = N7-platinated G) 17-membered macrocyclic ring formed by cisplatin anticancer drug binding to DNA alters the structure of the G*G* base pair steps, canting one base, and increases dynamic motion, complicating solution structural studies. However, the ring appears to favor the HH1 conformation (HH1 denotes head-to-head guanine bases, 1 denotes the normal direction of backbone propagation). Compared to cisplatin, analogues with NH groups in the carrier ligand replaced by bulky N-alkyl groups are more toxic and less active and form less dynamic adducts. To examine the molecular origins for the biological effects of steric bulk, we evaluate Me(4)DABPt(d(G*pG*)) models; the bulk and chirality of Me(4)DAB (N,N,N',N'-tetramethyl-2,3-diaminobutane with S,S or R,R configurations at the chelate ring carbons) impede dynamic motion and enhance the utility of NMR methods for identifying and characterizing conformers. Unlike past studies of adducts with such bulky carrier ligands, in which no HH conformer was found, the Me(4)DABPt(d(G*pG*)) adducts did form the HH1 conformer, providing compelling evidence that the sugar-phosphate backbone can impose constraints sufficient to overcome the alkyl-group steric effects. The HH1 conformer exhibits no significant canting. The (S,S)-Me(4)DABPt(d(G*pG*)) adduct has the least amount of the "normal" HH1 conformer and the greatest amount of the ΔHT1 conformer (ΔHT1 = head-to-tail G* bases with Δ chirality) ever observed (88% under some conditions). Thus, our results lead us to hypothesize that the low activity and high toxicity of analogues of cisplatin having carrier ligands with N-alkyl groups arise from the low abundance and minimal canting of the HH1 conformer and possibly from the adverse effects of an abundant ΔHT1 conformer. The new findings advance our understanding of the chemistry of the Pt(d(G*pG*)) macrocyclic ring and of the effects of carrier-ligand steric bulk on the properties of the ring.  相似文献   

18.
New [CpM(Q)Cl] complexes (M = Rh or Ir, Cp = pentamethylcyclopentadienyl, HQ = 1-phenyl-3-methyl-4R(C=O)-pyrazol-5-one in general, in detail HQ(Me), R = CH(3); HQ(Et), R = CH(2)CH(3); HQ(Piv), R = CH(2)-C(CH(3))(3); HQ(Bn), R = CH(2)-(C(6)H(5)); HQ(S), R = CH-(C(6)H(5))(2)) have been synthesized from the reaction of [CpMCl(2)](2) with the sodium salt, NaQ, of the appropriate HQ proligand. Crystal structure determinations for a representative selection of these [CpM(Q)Cl] compounds show a pseudo-octahedral metal environment with the Q ligand bonded in the O,O'-chelating form. In each case, two enantiomers (S(M)) and (R(M)) arise, differing only in the metal chirality. The reaction of [CpRh(Q(Bn))Cl] with MgCH(3)Br produces only halide exchange with the formation of [CpRh(Q(Bn))Br]. The [CpRh(Q)Cl] complexes react with PPh(3) in dichloromethane yielding the adducts CpRh(Q)Cl/PPh(3) (1:1) which exist in solution in two different isomeric forms. The interaction of [CpRh(Q(Me))Cl] with AgNO(3) in MeCN allows generation of [CpRh(Q(Me))(MeCN)]NO(3).3H(2)O, whereas the reaction of [CpRh(Q(Me))Cl] with AgClO(4) in the same solvent yields both [CpRh(Q(Me))(H(2)O)]ClO(4) and [CpRh(Cl)(H(2)O)(2)]ClO(4); the H(2)O molecules derive from the not-rigorously anhydrous solvents or silver salts.  相似文献   

19.
A novel manganese(IV) monomer, [Mn(IV)(Me(3)TACN)(OMe)(3)](PF(6)), has been synthesized in methanol by the reaction of MnCl(2) with the ligand, N,N',N"-trimethyl-1,4,7-triazacyclononane (Me(3)TACN), in the presence of Na(2)O(2). The resulting product was isolated as the red/brown crystalline hexafluorophosphate salt. The compound crystallizes in the space group P2/c with the cell dimensions a = 15.652(2) ?, b = 8.740(1) ?, c = 15.208(2) ?, beta = 108.81(1) degrees, V = 1969.4(4) ?(3), and Z = 4. The structure was solved by the heavy-atom method and was refined by full-matrix least-squares techniques to a final value of R = 0.067 (R(w) = 0.097) based upon 3087 observations. The manganese atom in the molecule is six-coordinate in an N(3)O(3) ligand environment with the triazacyclononane facially coordinated. Pertinent average bond distances and angles are as follows: Mn-O, 1.797(5) ?; Mn-N, 2.116(5) ?; O-Mn-O, 97.8(2) degrees; N-Mn-N, 81.4(2) degrees; O-Mn-N, 167.8 degrees (2); O-Mn-N, 86.8(2) degrees; O-Mn-N, 92.8(2) degrees. The complex was further characterized by UV-vis and EPR spectroscopies, solution magnetic susceptibility measurements, FAB-MS, and electrochemistry. [Mn(IV)(Me(3)TACN)(OMe)(3)](PF(6)) was found to catalyze the oxidation of water-soluble olefins using hydrogen peroxide as the oxidant in an aqueous medium. The catalyzed rates of oxidation of these olefins indicate at least a 12-fold rate enhancement over oxidant alone. The unusual stability of the catalytic species was demonstrated by the repeated additions of substrate and oxidant while maintaining a constant catalytic rate of oxidation.  相似文献   

20.
报道了标题化合物合成和晶体结构。X-射线结构分析表明,该化合物的分子式为C39H58BrO10P,Mr = 797.74,晶体属于单斜晶系,空间群为P21,晶胞参数a = 12.858(3), b = 25.130(5), c = 14.125(3) ? = 105.15(3), V = 4405(2) ?, Z = 4, Dc = 1.203 g/cm3, ?= 1.019 mm-1, F(000) = 1688,R = 0.0726, wR = 0.1201,共收集到9691个独立衍射点,其中可观测点5638个(I≥2s(I))。每个分子中有6个环,13个手性中心,2个五员环呈信封式构象,并分别与三员环组合成[2.4]螺环和[3.1.0]桥环化合物,4个新生成的手性中心的绝对构型为C(6)(S), C(7)(S), C(3)(R), C(2)(R),新引入的磷酸酯官能团C(9)为S构型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号