首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The He...I (35)Cl intermolecular vibrational levels with n'=0-6 that are bound within the He+ICl(B,v'=3) potential [A. B. McCoy, J. P. Darr, D. S. Boucher, P. R. Winter, M. D. Bradke, and R. A. Loomis, J. Chem. Phys. 120, 2677 (2004)] are identified in laser-induced fluorescence experiments performed at very low temperatures within a supersonic expansion. Comparisons of the positions and intensities of these lines with the excitation spectra, calculated using potential surfaces to describe the interactions between the helium atom and ICl in its ground and excited state, assist in the assignments. Based on these comparisons the excited state potential was rescaled so that the experimental and calculated J'=0 energies agree to within the experimental uncertainties for all but the lowest, n'=0, intermolecular level. Two-laser, action, and pump-probe spectroscopy experiments indicate that the bound He...I (35)Cl(B,v'=3) intermolecular vibrational levels undergo vibrational predissociation forming rotationally excited I (35)Cl(B,v'=2,j') products with distributions that depend upon the initial intermolecular vibrational level excited. Action spectra recorded in the ICl B-X, 2-0 region while monitoring the Deltav=0, I (35)Cl(B,v'=2) channel reveal two additional dissociation mechanisms for the He...I (35)Cl(B,v') excited state complexes: rotational predissociation of discrete metastable states lying slightly above the He+I (35)Cl(B,v'=2) asymptote and direct dissociation that occurs when the linear conformer is excited to the continuum of states above the same asymptote. The rotational predissociation pathway forms I (35)Cl(B,v'=2,j') products in all of the rotational states energetically accessible. The direct dissociation mechanism yields very cold rotational product state distributions; for instance, the average rotational energy in the product state distribution measured when the linear complexes are prepared 20 cm(-1) above the dissociation limit is only 1.51 cm(-1), representing only 7.6% of the available energy.  相似文献   

2.
The photodissociation dynamics of allyl chloride at 235 nm producing atomic Cl((2)P(J);J=1/2,3/2) fragments is investigated using a two-dimensional photofragment velocity ion imaging technique. Detection of the Cl((2)P(1/2)) and Cl((2)P(3/2)) products by [2+1] resonance enhanced multiphoton ionization shows that primary C-Cl bond fission of allyl chloride generates 66.8% Cl((2)P(3/2)) and 33.2% Cl((2)P(1/2)). The Cl((2)P(3/2)) fragments evidenced a bimodal translational energy distribution with a relative weight of low kinetic energy Cl((2)P(3/2))/high kinetic energy Cl((2)P(3/2)) of 0.097/0.903. The minor dissociation channel for C-Cl bond fission, producing low kinetic energy chlorine atoms, formed only chlorine atoms in the Cl((2)P(3/2)) spin-orbit state. The dominant C-Cl bond fission channel, attributed to an electronic predissociation that results in high kinetic energy Cl atoms, produced both Cl((2)P(1/2)) and Cl((2)P(3/2)) atomic fragments. The relative branching for this dissociation channel is Cl((2)P(1/2))/[Cl((2)P(1/2))+Cl((2)P(3/2))]=35.5%. The average fraction of available energy imparted into product recoil for the high kinetic energy products was found to be 59%, in qualitative agreement with that predicted by a rigid radical impulsive model. Both the spin-orbit ground and excited chlorine atom angular distributions were close to isotropic. We compare the observed Cl((2)P(1/2))/[Cl((2)P(1/2))+Cl((2)P(3/2))] ratio produced in the electronic predissociation channel of allyl chloride with a prior study of the chlorine atom spin-orbit states produced from HCl photodissociation, concluding that angular momentum recoupling in the exit channel at long interatomic distance determines the chlorine atom spin-orbit branching.  相似文献   

3.
4.
The predissociation of N(2) from the rotational levels in the o(1)∏(u) (v(') = 2) and b(') (1)Σ(u) (v(') = 8) bands has been studied in the wavenumber (or energy) range from 109?350 cm(-1) (13.5577 eV) to 109?580 cm(-1) (13.5862 eV) by time-sliced velocity-mapped imaging technique with VUV photoionization detection of the fragments. These levels were excited from the ground state of N(2) (X(1)Σ(g) (+), v(") = 0) levels using an unfocused vacuum ultraviolet (VUV) laser via a one-photon process. The same VUV laser is used to ionize the metastable N ((2)D(o)) produced from the predissociation process and the time-sliced velocity-mapped imaging technique is used to determine their velocity and angular distributions. Two different theoretical methods developed, respectively, by Kim et al. [J. Chem. Phys. 125, 133316 (2006) and Zande [J. Chem. Phys. 107, 9447 (1997)] were used to calculate the anisotropic parameters for the predissociation to the channel N((4)S(o)) + N((2)D(o)) to compare with the observed value for each of the rotational levels. Very good agreement with the experimental results was obtained for both methods. Possible predissociation mechanisms were predicted from the measurements and calculations.  相似文献   

5.
Following up our preliminary communication [Kawamata et al., Phys. Chem. Chem. Phys. 10, 4378 (2008)], the effects of the antisymmetric-stretching excitation of methane on the Cl((2)P(3/2))+CH(4) reaction are examined here over a wide range of initial collision energy in a crossed molecular beam imaging experiment. The antisymmetric stretch of CH(4) is prepared in a single rovibrational state of (v(3)=1, j=2) by direct infrared absorption, and the major product states of CH(3)(v=0) are probed by a time-sliced velocity-map imaging method. We find that at fixed collision energies, the stretching excitation promotes reaction rate. Compared to the ground-state reaction, this vibrational enhancement factor is, however, no more effective than the translational enhancement. The correlated HCl(v'=1) vibrational branching fraction shows a striking dependence on collision energies, varying from 0.7 at E(c)=2 kcal mol(-1) to about 0.2 at 13 kcal mol(-1). This behavior resembles the previously studied Cl+CH(2)D(2)(v(6)=1), but is in sharp contrast to the Cl+CHD(3)(v(1)=1) and CH(2)D(2)(v(1)=1) reactions. Dependences of experimental results on the probed rotational states of CH(3)(v=0) are also elucidated. We qualitatively interpret those experimental observations based on a conceptual framework proposed recently.  相似文献   

6.
We have studied the wavelength-dependent photodissociation dynamics of jet-cooled ClO radical from 235 to 291 nm using velocity map ion imaging. We find that Cl(2P(3/2))+O(1D(2)) is the dominant channel above the O(1D(2)) threshold with minor contributions from the Cl(2P(J))+O(3P(J)) and Cl(2P(1/2))+O(1D(2)) channels. We have measured the photofragment angular distributions for each dissociation channel and find that the A 2pi state reached via a parallel transition carries most of the oscillator strength above the O(1D(2)) threshold. The formation of O(3P(J)) fragments with positive anisotropy is evidence of curve crossing from the A 2pi state to one of several dissociative states. The curve crossing probability increases with wavelength in good agreement with previous theoretical calculations. We have directly determined the O(1D(2)) threshold to be 38,050+/-20 cm(-1) by measuring O(1D(2)) quantum yield in the wavelength range of 260-270 nm. We also report on the predissociation dynamics of ClO below the O(1D(2)) threshold. We find that the branching ratio of Cl(2P(3/2))/Cl(2P(1/2)) is 1.5+/-0.1 at both 266 and 291 nm. The rotational depolarization of the anisotropy parameters of the Cl(2P(3/2)) fragments provides predissociation lifetimes of 1.5+/-0.2 ps for the 9-0 band and 1.0+/-0.4 ps for the 8-0 band, in reasonable agreement with previous spectroscopic and theoretical studies.  相似文献   

7.
A full-dimensional quasi-classical trajectories study on the vibrational predissociation (VP) of the Ne79Br2(B) complex is presented. Following the most recent experiments, the Br2(B) vibrational levels v'=16-29 were explored. The total angular momentum, J, was taken to be zero, and a semiclassical Franck-Condon model to compute initial conditions from quantum distributions was employed. Predissociation lifetimes were extracted from Ne79Br2 population decay by using two different exponential laws. Predicted lifetimes are in excellent agreement with the last experimental results [J. A. Cabrera, C. R. Bieler, B. C. Olbricht, W. E. van der Veer and K. C. Janda, J. Chem. Phys., 2005, 123, 054311]. The Br2 fragment ro-vibrational distributions resulting from the VP of the molecule were obtained from the statistics of classical magnitudes using the standard binning procedure. Computed rotational distributions (for the Deltav'=-1, -2 channels) are also in very good agreement with the experimental results [M. Nejad-Sattari and T. A. Stephenson, J. Chem. Phys., 1997, 106 5454]. The influence of two quantum effects-the closing of the Deltav'=-1 dissociation channel and the intramolecular vibrational relaxation (IVR) mechanism-on the agreement with experimental rotational distributions, is discussed. Due to the classical character of our calculations and the binning procedure we used, the agreement of computed vibrational distributions with experimental and quantum theoretical is qualitative. For instance, for v'=28-for which the Deltav'=-1 channel is experimentally found to be closed-the Deltav'=-2 channel becomes statistically more significant. A discussion on the viability of similar quasi-classical methods to model the VP dynamics of analogous clusters is presented.  相似文献   

8.
H(35)Cl(v=0,J=0) molecules in a supersonic expansion were excited to the H(35)Cl(v=2,J=1,M=0) state with linearly polarized laser pulses at about 1.7 microm. These rotationally aligned J=1 molecules were then selectively photodissociated with a linearly polarized laser pulse at 220 nm after a time delay, and the velocity-dependent alignment of the (35)Cl((2)P(32)) photofragments was measured using 2+1 REMPI and time-of-flight mass spectrometry. The (35)Cl((2)P(32)) atoms are aligned by two mechanisms: (1) the time-dependent transfer of rotational polarization of the H(35)Cl(v=2,J=1,M=0) molecule to the (35)Cl((2)P(32)) nuclear spin [which is conserved during the photodissociation and thus contributes to the total (35)Cl((2)P(32)) photofragment atomic polarization] and (2) the alignment of the (35)Cl((2)P(32)) electronic polarization resulting from the photoexcitation and dissociation process. The total alignment of the (35)Cl((2)P(32)) photofragments from these two mechanisms was found to vary as a function of time delay between the excitation and the photolysis laser pulses, in agreement with theoretical predictions. We show that the alignment of the ground-state (35)Cl((2)P(32)) atoms, with respect to the photodissociation recoil direction, can be controlled optically. Potential applications include the study of alignment-dependent collision effects.  相似文献   

9.
Oxygen Rydberg time-of-flight spectroscopy was used to study the vacuum ultraviolet photodissociation dynamics of N(2)O near 130 nm. The O((3)P(J)) products were tagged by excitation to high-n Rydberg levels and subsequently field ionized at a detector. In agreement with previous work, we find that O((3)P(J)) formation following excitation to the repulsive N(2)O D((1)Sigma(+)) state produces the first two electronically excited states of the N(2) counterfragment, N(2)(A (3)Sigma(u) (+)) and N(2)(B (3)Pi(g)). The O((3)P(J)) translational energy distribution reveals that the overall branching ratio between N(2)(A (3)Sigma(u) (+)) and N(2)(B (3)Pi(g)) formation is approximately 1.0:1.0 for J = 1 and 2, with slightly less N(2)(B (3)Pi(g)) produced in coincidence with O((3)P(0)). The angular distributions were found to be independent of J and highly anisotropic, with beta = 1.5+/-0.2.  相似文献   

10.
Femtosecond time-resolved velocity map imaging experiments are reported on several vibronic levels of the second absorption band (B-band) of CH(3)I, including vibrational excitation in the ν(2) and ν(3) modes of the bound (3)R(1)(E) Rydberg state. Specific predissociation lifetimes have been determined for the 2(0)(1) and 3(0)(1) vibronic levels from measurements of time-resolved I*((2)P(1/2)) and CH(3) fragment images, parent decay, and photoelectron images obtained through both resonant and non-resonant multiphoton ionization. The results are compared with our previously reported predissociation lifetime measurements for the band origin 0(0) (0) [Gitzinger et al., J. Chem. Phys. 132, 234313 (2010)]. The result, previously reported in the literature, where vibrational excitation to the C-I stretching mode (ν(3)) of the CH(3)I (3)R(1)(E) Rydberg state yields a predissociation lifetime about four times slower than that corresponding to the vibrationless state, whereas predissociation is twice faster if the vibrational excitation is to the umbrella mode (ν(2)), is confirmed in the present experiments. In addition to the specific vibrational state lifetimes, which were found to be 0.85 ± 0.04 ps and 4.34 ± 0.13 ps for the 2(0)(1) and 3(0)(1) vibronic levels, respectively, the time evolution of the fragment anisotropy and the vibrational activity of the CH(3) fragment are presented. Additional striking results found in the present work are the evidence of ground state I((2)P(3/2)) fragment production when excitation is produced specifically to the 3(0)(1) vibronic level, which is attributed to predissociation via the A-band (1)Q(1) potential energy surface, and the indication of a fast adiabatic photodissociation process through the repulsive A-band (3)A(1)(4E) state, after direct absorption to this state, competing with absorption to the 3(0)(1) vibronic level of the (3)R(1)(E) Rydberg state of the B-band.  相似文献   

11.
High resolution HF product time-of-flight spectra measured for the reactive scattering of F atoms from n-H2(p-H2) molecules at collision energies between 69 and 81 meV are compared with exact coupled-channel quantum mechanical calculations based on the Stark-Werner ab initio ground state potential energy surface. Excellent agreement between the experimental and computed rotational distributions is found for the HF product vibrational states v'=1 and v'=2. For the v'=3 vibrational state the agreement, however, is less satisfactory, especially for the reaction with p-H2. The results for v'=1 and v'=2 confirm that the reaction dynamics for these product states is accurately described by the ground electronic state 1 (2)A' potential energy surface. The deviations for HF(v'=3, j' > or =2) are attributed to an enhancement of the reaction resulting from the 25% fraction of excited ((2)P(12)) fluorine atoms in the reactant beam.  相似文献   

12.
Sliced velocity-map imaging has been used to measure photofragment scattering distributions for the O((3)P(2)) and O((3)P(1)) products of O(2) photolysis following laser excitation into the Herzberg continuum between 205 and 241 nm. The images were analysed to extract the photofragment spatial anisotropy parameter, β, together with the alignment parameters a(∥), a(⊥), a(⊥), and Re[a(∥, ⊥)]. Our alignment measurements bridge the gap between the recent 193 nm measurement of Brouard et al., Phys. Chem. Chem. Phys., 2006, 8, 5549 and those of Alexander et al., J. Chem. Phys., 2003, 118, 10566 at 222 and 237 nm, and extend out to the threshold at 241 nm. Our measured parameters show no strong dependence on photolysis wavelength. Near the threshold we were able to separate the contributions from the O((3)P(2)) + O((3)P(2)) and O((3)P(2)) + O((3)P(1)) channels, and found significantly different photofragment alignments for the two cases.  相似文献   

13.
We have performed quantum mechanical (QM) dynamics calculations within the independent-state approximation with new benchmark triplet A" and A' surfaces [B. Ramachandran et al., J. Chem. Phys. 119, 9590 (2003)] for the rovibronic state-to-state measurements of the reaction O(3P)+HCl(v=2,j=1,6,9)-->OH(v'j')+Cl(2P) [Zhang et al., J. Chem. Phys. 94, 2704 (1991)]. The QM and experimental rotational distributions peak at similar OH(j') levels, but the QM distributions are significantly narrower than the measurements and previous quasiclassical dynamics studies. The OH(low j) populations observed in the measurements are nearly absent in the QM results. We have also performed quasiclassical trajectory with histogram binning (QCT-HB) calculations on these same benchmark surfaces. The QCT-HB rotational distributions, which are qualitatively consistent with measurements and classical dynamics studies using other surfaces, are much broader than the QM results. Application of a Gaussian binning correction (QCT-GB) dramatically narrows and shifts the QCT-HB rotational distributions to be in very good agreement with the QM results. The large QCT-GB correction stems from the special shape of the joint distribution of the classical rotational/vibrational action of OH products. We have also performed QM and QCT calculations for the transition, O+HCl(v=0,T=300 K)-->OH(v'j')+Cl from threshold to approximately 130 kcal mol(-1) collision energy as a guide for possible future hyperthermal O-atom measurements. We find in general a mixed energy release into translation and rotation consistent with a late barrier to reaction. Angular distributions at high collision energy are forward peaked, consistent with a stripping mechanism. Direct collisional excitation channel cross sections, O+HCl(v=0,T=300 K)-->O+HCl(v'=1), in the same energy range are large, comparable in magnitude to the reactive channel cross sections. Although the (3)A" state dominates most collision processes, above approximately 48 kcal mol(-1), the (3)A' state plays the major role in collisional excitation.  相似文献   

14.
We investigate the vibronic and spin-orbit (SO) coupling effects in the state-selected dynamics of the title reaction with the aid of a time-dependent wave packet approach. The ab initio potential energy surfaces of Capecchi and Werner [Science 296, 715 (2002)] have been employed for this purpose. Collinear approach of the Cl((2)P) atom to the H(2) molecule splits the degeneracy of the (2)P state and gives rise to (2)Sigma and (2)Pi electronic states. These two surfaces form a conical intersection at this geometry. These states transform as 1 (2)A('), 1 (2)A("), and 2 (2)A('), respectively, at the nonlinear configurations of the nuclei. In addition, the SO interaction due to Cl atom further splits these states into (2)Sigma(1/2), (2)Pi(3/2), and (2)Pi(1/2) components at the linear geometry. The ground-state reagent Cl((2)P(3/2))+H(2) correlates with (2)Sigma(1/2) and (2)Pi(3/2), where as the SO excited reagent Cl(*)((2)P(1/2))+H(2) correlates with (2)Pi(1/2) at the linear geometry. In order to elucidate the impact of the vibronic and SO coupling effects on the initial state-selected reactivity of these electronic states we carry out quantum scattering calculations based on a flux operator formalism and a time-dependent wave packet approach. In this work, total reaction probabilities and the time dependence of electronic population of the system by initiating the reaction on each of the above electronic states are presented. The role of conical intersection alone on the reaction dynamics is investigated with a coupled two-state model and for the total angular momentum J=0 (neglecting the electronic orbital angular momentum) both in a diabatic as well as in the adiabatic electronic representation. The SO interaction is then included and the dynamics is studied with a coupled three-state model comprising six diabatic surfaces for the total angular momentum J=0.5 neglecting the Coriolis Coupling terms of the Hamiltonian. Companion calculations are carried out for the uncoupled adiabatic and diabatic surfaces in order to explicitly reveal the impact of two different surface coupling mechanisms in the dynamics of this prototypical reaction.  相似文献   

15.
We report full-dimensional, electronically adiabatic potential energy surfaces (PESs) for the ground state (1A(')) and excited state (2A(')) of OH(3). The PESs are permutationally invariant fits to roughly 23,000 electronic energies (MRCI + Q/aVTZ). Classical trajectory calculations of the postquenching dynamics of OH A (2)Σ(+) are carried out on the 1A(') PES for H(2) and D(2), at previously identified conical intersections (CoIs) [B. C. Hoffman and D. R. Yarkony, J. Chem. Phys. 113, 10091 (2000)]. The initial momenta are sampled fully and partially microcanonically, corresponding to "adiabatic" and "diabatic" models of the dynamics, respectively. Branching ratios of reactive to nonreactive channels from separate C(2v), C(∞v), and C(s) symmetries of CoIs are calculated, as are final rovibrational state distributions of OH and H(2) products. The rovibrational distributions of the OH and D(2) products, the D/H-atom translational energy distribution are calculated and compared to experimental ones. Agreement for these observable quantities is good. The branching between reactive and nonreactive quenching is sensitive to the momenta sampling; very good agreement with experiment is obtained using the diabatic sampling but not with the adiabatic sampling. The vibrational state distributions of H(2)O and HOD (although not measured by experiment) are also presented.  相似文献   

16.
ICl photolysis in the ultraviolet region of the spectrum (235-265 nm) is studied using the Slice Imaging technique. The Cl?((2)P(1/2))/Cl((2)P(3/2)) and the I?((2)P(1/2))/I((2)P(3/2)) branching ratio between the I((2)P(3/2)) + Cl((2)P(3/2))∕Cl?((2)P(1/2)) and I?((2)P(1/2)) + Cl((2)P(3∕/2))∕Cl?((2)P(1/2)) channels is extracted from the respective iodine and chlorine photofragment images. We find that ground state chlorine atoms (Cl((2)P(3/2))) are formed nearly exclusively with excited state iodine atoms (I?((2)P(1/2))), while excited spin-orbit chlorine atoms (Cl?((2)P(1/2))) are concurrently produced only with ground state iodine atoms (I((2)P(3/2))). We conclude that photolysis of ICl in this UV region is a relatively "clean" source of spin-orbit excited chlorine atoms that can be used in crossed molecular beam experiments.  相似文献   

17.
Collisionless lifetimes for Bi2 A(0u+), v'=20-39, J'X) spectrum required both traditional lifetime measurements and synthetic spectrum fits to laser excitation spectra to determine the full range of observed rates. A single, repulsive potential responsible for the observed A-state predissociation could not be identified to adequately describe the vibrational dependence of the predissociation rates.  相似文献   

18.
Bound energy levels and properties of the Cl(2P)-HF complex were obtained from full three-dimensional (3D) calculations, with the use of the ab initio computed diabatic potential surfaces from the preceding paper and the inclusion of spin-orbit coupling. For a better understanding of the dynamics of this complex we also computed a 2D model in which the HF bond length r was frozen at the vibrationally averaged values r0 and r1 and a 2 + 1D model in which the 3D potentials were averaged over the v(HF) = 0 and v(HF) = 1 vibrational wave functions of free HF. Also 1D calculations were made in which both r and the Cl-HF distance R were frozen. The complex is found to have the linear hydrogen bonded Cl-HF structure, with ground-state quantum numbers J = 3/2 for the overall angular momentum and /omega/ = 3/2 for its projection on the intermolecular axis R. The binding energy is D0 = 432.25 cm(-1) for v(HF) = 0 and D0 = 497.21 cm(-1) for v(HF) = 1. Bending modes with /omega/ = 1/2 and /omega/ = 5/2 are split by the Renner-Teller effect, since the electronic ground state is a degenerate 2pi state. A series of intermolecular (R) stretch modes was identified. Rotational constants and e-f parity splittings were extracted from the levels computed for J = 1/2 to 7/2. The computed red shift of the HF stretch frequency of 64.96 cm(-1) and the 35Cl-37Cl isotope shift of 0.033 cm(-1) are in good agreement with the values of 68.77 and 0.035 cm(-1) obtained from the recent experiment of Merritt et al. (Phys. Chem. Chem. Phys. 2005, 7, 67), after correction for the effect of the He nanodroplet matrix in which they were measured.  相似文献   

19.
A crossed molecular beam study is presented for the O((1)D(2))+HCl-->OH+Cl((2)P(J)) reaction at the collision energy of 6 kcal mol(-1). State-resolved doubly differential cross sections are obtained for the Cl((2)P(J=3/2) ) and Cl*((2)P(J=1/2) ) products by velocity-map ion imaging. Both products are slightly more forward scattered, which suggests a reaction mechanism without a long-lived intermediate in the ground electronic state. A small fraction (23 %) of the energy release into the translational degree of freedom indicates strong internal excitation of the counterpart OH radical. The contribution of the electronic excited states of O--HCl to the overall reaction is also examined from the doubly differential cross sections.  相似文献   

20.
The three lowest (1A('), 2A('), and 1A(')) adiabatic potential energy surfaces (PESs) for the Br((2)P) + H(2) reactive system have been computed based on the multi-reference configuration interaction (MRCI) method including the Davidson's correction with a large basis set. These three adiabatic PESs have been transformed to a diabatic representation, leading to four coupling potentials. In addition, the spin-orbit matrix elements were also obtained using the Breit-Pauli Hamiltonian and the unperturbed MRCI wavefunctions in the Br + H(2) channel and the transition state region. Consequently, six coupling potentials were obtained and their characteristics were extensively discussed. Nonadiabatic quantum dynamics calculations for this system have been realized with these realistic diabatic potentials instead of previous semi-empirical diabatic potentials. Based on two-state model nonadiabatic calculations for the Br((2)P(3∕2), (2)P(1∕2)) + H(2) reaction, the Br((2)P(1∕2)) + H(2) reaction was found to show less reactivity than the Br((2)P(3∕2)) + H(2) reaction at collision energies beyond the threshold of the Br((2)P(3∕2)) + H(2) reaction. Our results are consistent with the previous studies on the XH(2) (X = F, Cl) system, which indicate that the adiabatically forbidden channel is dominant at low energies in the open-shell halogen atom plus H(2) reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号