首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Radiationless deactivation pathways of excited gas phase nucleobases were investigated using mass-selected femtosecond resolved pump-probe resonant ionization. By comparison between nucleobases and methylated species, in which tautomerism cannot occur, we can access intrinsic mechanisms at a time resolution never reported so far (80 fs). At this time resolution, and using appropriate substitution, real nuclear motion corresponding to active vibrational modes along deactivation coordinates can actually be probed. We provide evidence for the existence of a two-step decay mechanism, following a 267 nm excitation of the nucleobases. The time resolution achieved together with a careful zero time-delay calibration between lasers allow us to show that the first step does correspond to intrinsic dynamics rather than to a laser cross correlation. For adenine and 9-methyladenine a first decay component of about 100 fs has been measured. This first step is radically increased to 200 fs when the amino group hydrogen atoms of adenine are substituted by methyl groups. Our results could be rationalized according to the effect of the highly localized nature of the excitation combined to the presence of efficient deactivation pathway along both pyrimidine ring and amino group out-of-plane vibrational modes. These nuclear motions play a key role in the vibronic coupling between the initially excited pipi* and the dark npi* states. This seems to be the common mechanism that opens up the earlier phase of the internal conversion pathway which then, in consideration of the rather fast relaxation times observed, would probably proceed via conical intersection between the npi* relay state and high vibrational levels of the ground state.  相似文献   

2.
The mechanisms which are responsible for the radiationless deactivation of the npi* and pipi* excited singlet states of thymine have been investigated with multireference ab initio methods (the complete-active-space self-consistent-field (CASSCF) method and second-order perturbation theory with respect to the CASSCF reference (CASPT2)) as well as with the CC2 (approximated singles and doubles coupled-cluster) method. The vertical excitation energies, the equilibrium geometries of the 1npi*and 1pipi* states, as well as their adiabatic excitation energies have been determined. Three conical intersections of the S1 and S0 energy surfaces have been located. The energy profiles of the excited states and the ground state have been calculated with the CASSCF method along straight-line reaction paths leading from the ground-state equilibrium geometry to the conical intersections. All three conical intersections are characterized by strongly out-of-plane distorted geometries. The lowest-energy conical intersection (CI1) arises from a crossing of the lowest 1pipi* state with the electronic ground state. It is found to be accessible in a barrierless manner from the minimum of the 1pipi* state, providing a direct and fast pathway for the quenching of the population of the lowest optically allowed excited states of thymine. This result explains the complete diffuseness of the absorption spectrum of thymine in supersonic jets. The lowest vibronic levels of the optically nearly dark 1npi* state are predicted to lie below CI1, explaining the experimental observation of a long-lived population of dark excited states in gas-phase thymine.  相似文献   

3.
The excited state dynamics of the purine base 9-methyladenine (9Me-Ade) has been investigated by time- and energy-resolved photoelectron imaging spectroscopy and mass-selected ion spectroscopy, in both vacuum and water-cluster environments. The specific probe processes used, namely a careful monitoring of time-resolved photoelectron energy distributions and of photoion fragmentation, together with the excellent temporal resolution achieved, enable us to derive additional information on the nature of the excited states (pipi*, npi*, pisigma*, triplet) involved in the electronic relaxation of adenine. The two-step pathway we propose to account for the double exponential decay observed agrees well with recent theoretical calculations. The near-UV photophysics of 9Me-Ade is dominated by the direct excitation of the pipi* ((1)L(b)) state (lifetime of 100 fs), followed by internal conversion to the npi* state (lifetime in the ps range) via conical intersection. No evidence for the involvement of a pisigma* or a triplet state was found. 9Me-Ade-(H(2)O)(n) clusters have been studied, focusing on the fragmentation of these species after the probe process. A careful analysis of the fragments allowed us to provide evidence for a double exponential decay profile for the hydrates. The very weak second component observed, however, led us to conclude that the photophysics were very different compared with the isolated base, assigned to a competition between (i) a direct one-step decay of the initially excited state (pipi* L(a) and/or L(b), stabilised by hydration) to the ground state and (ii) a modified two-step decay scheme, qualitatively comparable to that occurring in the isolated molecule.  相似文献   

4.
Understanding the primary photophysical processes in molecules is essential for interpreting their photochemistry, because molecules rarely react from the initially excited electronic state. In this study the ultrafast excited-state dynamics of chlorophenylcarbene (CPC) and trifluoromethylphenylcarbene (TFPC), two species that are considered as models for carbene dynamics, were investigated by femtosecond time-resolved pump probe spectroscopy in the gas phase. Their dynamics was followed in real time by time-resolved photoionization and photoelectron imaging. CPC was excited at 265 nm into the 3 1A' state, corresponding to excitation from a pi-orbital of the aromatic ring into the LUMO. The LUMO contains a contribution of the p-orbital at the carbene center. Three time constants are apparent in the photoelectron images: A fast decay process with tau1 approximately 40 fs, a second time constant of tau2 approximatley 350 fs, and an additional time constant of tau3 approximately 1 ps. The third time constant is only visible in the time-dependence of low kinetic energy electrons. Due to the dense manifold of excited states between 3.9 and 5 eV, known from ab initio calculations, the recorded time-resolved electron images show broad and unstructured bands. A clear population transfer between the states thus can not directly be observed. The fast deactivation process is linked to either a population transfer between the strongly coupled excited states between 3.9 and 5.0 eV or the movement of the produced wave packet out of the Franck-Condon region. Since the third long time constant is only visible for photoelectrons at low kinetic energy, evidence is given that this time constant corresponds to the lifetime of the lowest excited A 1A' state. The remaining time constant reflects a deactivation of the manifold of states in the range 3.9-5.0 eV down to the A 1A' state.  相似文献   

5.
The CASPT2/CASSCF method with the 6-311G basis set and an active space up to (14, 11) was used to explore the ultrafast internal conversion mechanism for excited 9H-adenine. Three minima, two transition states, and seven conical intersections were obtained to build up the two deactivation pathways for the internal conversion mechanism. Special efforts were made to explore the excited-state potential energy surfaces near the Franck-Condon region and determine the various barriers in the processes of deactivation. The barrier required from the 1pipi (1La) state to deactivate nonradiatively is found to be lower than that required from the 1pipi (1Lb) state. On 250 nm excitation, the 1pipi (1La) state is populated, and the transition from 1pipi (1La) to the lowest 1npi state involves very low barriers, which may account for the observed short (<50 fs) lifetime of the 1pipi excited state. The deactivation of the lowest 1npi state is required to overcome a barrier of 3.15 kcal/mol, which should be responsible for the 750 fs lifetime of the npi excited state. On 267 nm excitation, the vibrationally active 1pipi (1Lb) state is populated. Excitation at 277 nm prepares the 1pipi (1Lb) state without much excessive vibrational energy, which may be responsible for the observed >2 ps lifetime.  相似文献   

6.
The modified nucleic acid base, 1-cyclohexyluracil, was studied by femtosecond transient absorption spectroscopy in protic and aprotic solvents of varying polarity. UV excitation at 267 nm populates the lowest-energy bright state, a (1)pipi* state, which has a lifetime of 120-270 fs, depending on the solvent. In all solvents, this initial bright state population bifurcates with approximately 60% undergoing subpicosecond nonradiative decay to the electronic ground state and the remaining population branching to a singlet dark state. The latter absorbs between 340 and 450 nm. The latter state is assigned to the lowest-energy (1)npi* state. It decays to the electronic ground state with a lifetime that varies from 26 ps in water to at least several nanoseconds in aprotic solvents. The results suggest that the two nonradiative decay pathways identified for photoexcited uracil in recent quantum chemical calculations (Matsika, S. J. Phys. Chem. A. 2004, 108, 7584) are simultaneously operative in a wide variety of solvent environments. The lowest-energy triplet state was also detected by transient absorption. The triplet population appears in a few picoseconds and is not formed from the thermalized (1)npi* state. It is suggested that high spin-orbit coupling is found only along initial segments of the nonradiative decay pathways. Efficient intersystem crossing prior to vibrational cooling offers a possible explanation for the wavelength-dependent triplet yields seen in single DNA bases.  相似文献   

7.
Electronically nonadiabatic processes such as ultrafast internal conversion (IC) from an upper electronic state (S(1)) to the ground electronic state (S(0)) though a conical intersection (CI), can play an essential role in the initial steps of the decomposition of energetic materials. Such nonradiative processes following electronic excitation can quench emission and store the excitation energy in the vibrational degrees of freedom of the ground electronic state. This excess vibrational energy in the ground electronic state can dissociate most of the chemical bonds of the molecule and can generate stable, small molecule products. The present study determines ultrafast IC dynamics of a model nitramine energetic material, dimethylnitramine (DMNA). Femtosecond (fs) pump-probe spectroscopy, for which a pump pulse at 271 nm and a probe pulse at 405.6 nm are used, is employed to elucidate the IC dynamics of this molecule from its S(1) excited state. A very short lifetime of the S(1) excited state (~50 ± 16 fs) is determined for DMNA. Complete active space self-consistent field (CASSCF) calculations show that an (S(1)/S(0))(CI) CI is responsible for this ultrafast decay from S(1) to S(0). This decay occurs through a reaction coordinate involving an out-of-plane bending mode of the DMNA NO(2) moiety. The 271 nm excitation of DMNA is not sufficient to dissociate the molecule on the S(1) potential energy surface (PES) through an adiabatic NO(2) elimination pathway.  相似文献   

8.
Detailed simulation study is reported for the excited-state dynamics of photoisomerization of cis-tetraphenylethylene (TPE) following excitation by a femtosecond laser pulse. The technique for this investigation is semiclassical dynamics simulation, which is described briefly in the paper. Upon photoexcitation by a femtosecond laser pulse, the stretching motion of the ethylenic bond of TPE is initially excited, leading to a significant lengthening of ethylenic bond in 300 fs. Twisting motion about the ethylenic bond is activated by the energy released from the relaxation of the stretching mode. The 90 degrees twisting about the ethylenic bond from an approximately planar geometry to nearly a perpendicular conformation in the electronically excited state is completed in 600 fs. The torsional dynamics of phenyl rings which is temporally lagging behind occurs at about 5 ps. Finally, the twisted TPE reverts to the initial conformation along the twisting coordinate through nonadiabatic transitions. The simulation results provide a basis for understanding several spectroscopic observations at molecular levels, including ultrafast dynamic Stokes shift, multicomponent fluorescence, viscosity dependence of the fluorescence lifetime, and radiationless decay from electronically excited state to the ground state along the isomerization coordinate.  相似文献   

9.
The electronically excited singlet states of complexes of uracil with one water molecule have been studied theoretically using ab initio multireference configuration interaction methods. In agreement with previous theoretical and experimental results, four cyclic isomers of uracil forming hydrogen bonds with the water molecule have been located with energies within 0.2 eV from the lowest energy isomer. Focus has been given on the mechanism for radiationless decay to the ground state after initial UV absorption and on the effect of complexation with water on previously reported radiationless decay pathways. Features on the excited state potential energy surfaces, such as minima, transition states and conical intersections, have been located for all isomers and compared with those of free uracil. The hydrogen-bonded water molecule changes the relative energies of these features and may lead to different excited state dynamics and lifetimes, in agreement with experimental observations.  相似文献   

10.
Singlet fluorescence lifetimes of adenosine, cytidine, guanosine, and thymidine, determined by femtosecond pump-probe spectroscopy (Pecourt, J.-M. L.; Peon, J.; Kohler, B. J. Am. Chem. Soc. 2000, 122, 9348. Pecourt, J.-M. L.; Peon, J.; Kohler, B. J. Am. Chem. Soc. 2001, 123, 10370), show that the excited states produced by 263 nm light in these nucleosides decay in the subpicosecond range (290-720 fs). Ultrafast radiationless decay to the ground state greatly reduces the probability of photochemical damage. In this work we present a theoretical study of isolated cytosine, the chromophore of cytidine. The experimental lifetime of 720 fs indicates that there must be an ultrafast decay channel for this species. We have documented the possible decay channels and approximate energetics, using a valence-bond derived analysis to rationalize the structural details of the paths. The mechanism favored by our calculations and the experimental data involves (1) a two-mode decay coordinate composed of initial bond length inversion followed by internal vibrational energy redistribution (IVR) to populate a carbon pyramidalization mode, (2) a state switch between the pi,pi* and nO,pi* (excitation from oxygen lone pair) excited states, and (3) decay to the ground state through a conical intersention. A second decay path through the nN,pi* state (excitation from the nitrogen lone pair), with a higher barrier, involves out-of-plane bending of the amino substituent.  相似文献   

11.
An equal pulse correlation technique based on angle-resolved two-photon photoemission is employed to investigate the lifetime of electronic excitations of an adsorbate on a single crystal metal surface. Photoemission from an occupied surface state on Cu(111) by a non-resonant two-photon process via the sp-band gap is used to characterize directly at the surface the width and shape of 65 fs laser pulses at a photon energy of hv = 3.4 eV. The 2PPE correlation technique allows the establishment of an upper limit of τ < 20 fs for the lifetime of the 2π* resonance of CO adsorbed on Cu(111), whereas from the spectral width of the 2π* level a lower limit of ≈1 fs is estimated.  相似文献   

12.
A fluorescein derivative (SAMSA) bound to gold nanoparticles of different diameters is investigated by time-resolved fluorescence at the single molecule level in a wide dynamic range, from nanosecond to second time scale. The significant decrease of both SAMSA excited state lifetime and fluorescence quantum yield observed upon binding to gold nanoparticles can be essentially traced back to an increase of the nonradiative deactivation rate, probably due to energy transfer, that depends on the nanoparticle size. A slow single molecule fluorescence blinking, in the ms time scale, has a marked dependence on the excitation intensity both under single and under two photon excitation. The blinking dynamics is limited by a low probability nonlinear excitation to a high energy state from which a transition to a dark state occurs. The results point out a strong coupling between the vibro-electronic configuration of the dye and the plasmonic features of the metal nanoparticles that provide dye radiationless deactivation channels on a wide dynamic range.  相似文献   

13.
We investigate the photochemistry and photodissociation dynamics of uracil by two-colour photofragment Doppler spectroscopy and by two-colour slice imaging at excitation wavelengths between 268 and 235 nm. We observe the loss of a hydrogen atom upon excitation into the pipi* state. The angular distribution indicates a statistical process, while the translational energy distribution agrees with a dissociation that takes place on the electronic ground state. The pipi* state most likely deactivates via the lower-lying npi* state. In addition there is evidence for a second pathway: direct decay of the pipi* state to the electronic ground state with subsequent dissociation. Experiments on uracil-1,3-D(2) show that there is no site selectivity in the dissociation process. No evidence was found for the direct dissociation via a pisigma* excited state that seems to be relevant in the photochemistry of adenine and many other heterocyclic molecules. Overall, the photochemistry of uracil is similar to that of thymine.  相似文献   

14.
The solvation of electrons in polar liquids is analyzed on the basis of an extended continuum model. In addition to the long-range electron-dipole interaction two short-range interactions are introduced. Among others one accounts for interactions with groups capable of forming hydrogen bonds and the second for quadrupolar characteristics of the liquid molecules. Both are induced by the orientation of the molecular dipole. Applying the scaling method a proper reaction coordinate is introduced and the solvation dynamics are discussed for the electron in the electronic ground state and after excitation to the p-type excited state. The observed spectral evolution of the transient absorption spectra, after two photon excitations for electrons in water and in methanol, is well described by this theory. An analytic estimate for the nonradiative deactivation from the electronically excited solvated electron is found to be consistent with an observed lifetime of 50 fs for the electron in water. The theory predicts an about three times slower internal conversion in methanol as solvent in comparison with water.  相似文献   

15.
The DNA base adenine and four monomethylated adenines were studied in solution at room temperature by femtosecond pump-probe spectroscopy. Transient absorption at visible probe wavelengths was used to directly observe relaxation of the lowest excited singlet state (S(1) state) populated by a UV pump pulse. In H(2)O, transient absorption signals from adenine decay biexponentially with lifetimes of 0.18 +/- 0.03 ps and 8.8 +/- 1.2 ps. In contrast, signals from monomethylated adenines decay monoexponentially. The S(1) lifetimes of 1-, 3-, and 9-methyladenine are similar to one another and are all below 300 fs, while 7-methyladenine has a significantly longer lifetime (tau = 4.23 +/- 0.13 ps). On this basis, the biexponential signal of adenine is assigned to an equilibrium mixture of the 7H- and 9H-amino tautomers. Excited-state absorption (ESA) by 9-methyladenine is 50% stronger than by 7-methyladenine. Assuming that ESA by the corresponding tautomers of adenine is unchanged, we estimate the population of 7H-adenine in H(2)O at room temperature to be 22 +/- 4% (estimated standard deviation). To understand how the environment affects nonradiative decay, we performed the first solvent-dependent study of nucleobase dynamics on the ultrafast time scale. In acetonitrile, both lowest energy tautomers of adenine are present in roughly similar proportions as in water. The lifetimes of the 9-substituted adenines depend somewhat more sensitively on the solvent than those of the 7-substituted adenines. Transient signals for adenine in H(2)O and D(2)O are identical. These solvent effects strongly suggest that excited-state tautomerization is not an important nonradiative decay pathway. Instead, the data are most consistent with electronic energy relaxation due to state crossings between the optically prepared (1)pipi* state and one or more (1)npi* states and the electronic ground state. The pattern of lifetimes measured for the monomethylated adenines suggests a special role for the (1)npi* state associated with the N7 electron lone pair.  相似文献   

16.
The electronic singlet-singlet and singlet-triplet electronic transitions of the isoalloxazine ring of the flavin core are studied using second-order perturbation theory within the framework of the CASPT2//CASSCF protocol. The main features of the absorption spectrum are computed at 3.09, 4.28, 4.69, 5.00, and 5.37 eV. The lowest singlet (S1) and triplet (T1) excited states are found to be both of pi character with a singlet-triplet splitting of 0.57 eV. On the basis of the analysis of the computed spin-orbit couplings and the potential energy hypersurfaces built for the relevant excited states, the intrinsic mechanism for photoinduced population of T1 is discussed. Upon light absorption, evolution of the lowest singlet excited state along the relaxation pathway leads ultimately to the population of the lowest triplet state, which is mediated by a singlet-triplet crossing with a state of npi* type. Subsequently a radiationless decay toward T1 through a conical intersection takes place. The intersystem crossing mechanism and the internal conversion processes documented here provide a plausible route to access the lowest triplet state, which has a key role in the photochemistry of the flavin core ring and is mainly responsible for the reactivity of the system.  相似文献   

17.
Electronic relaxation pathways in photoexcited nucleobases have received much theoretical and experimental attention due to their underlying importance to the UV photostability of these biomolecules. Multiple mechanisms with different energetic onsets have been proposed by ab initio calculations yet the majority of experiments to date have only probed the photophysics at a few selected excitation energies. We present femtosecond time-resolved photoelectron spectra (TRPES) of the DNA base adenine in a molecular beam at multiple excitation energies between 4.7-6.2 eV. The two-dimensional TRPES data is fit globally to extract lifetimes and decay associated spectra for unambiguous identification of states participating in the relaxation. Furthermore, the corresponding amplitude ratios are indicative of the relative importance of competing pathways. We adopt the following mechanism for the electronic relaxation of isolated adenine; initially the S(2)(ππ*) state is populated by all excitation wavelengths and decays quickly within 100 fs. For excitation energies below ~5.2 eV, the S(2)(ππ*)→S(1)(nπ*)→S(0) pathway dominates the deactivation process. The S(1)(nπ*)→S(0) lifetime (1032-700 fs) displays a trend toward shorter time constants with increasing excitation energy. On the basis of relative amplitude ratios, an additional relaxation channel is identified at excitation energies above 5.2 eV.  相似文献   

18.
Anion time-resolved photoelectron imaging has been used to investigate the electronic relaxation dynamics of C(6) (-) following excitation of the C (2)Pi(g)<--X (2)Pi(u) and 2 (2)Pi(g)<--X (2)Pi(u) 0(0) (0) transitions at 607 and 498 nm, respectively. Analysis of evolving photodetachment energy distributions reveals differing relaxation pathways from these prepared states. Specifically, the C (2)Pi(g) 0(0) level relaxes on a time scale of 620+/-30 fs to vibrationally hot ( approximately 2.0 eV) anion ground state both directly and indirectly through vibrationally excited levels of the intermediate-lying A (2)Sigma(g) (+) state that decay with a time scale of 2300+/-200 fs. In contrast, the 2 (2)Pi(g) 0(0) level relaxes much more quickly (<100 fs) to vibrationally hot ( approximately 2.5 eV) anion ground state directly and with transient population accumulation in the A (2)Sigma(g) (+), B (2)Sigma(u) (+), and C (2)Pi(g) electronic levels, as determined by spectral and time-scale analyses. This work also presents the experimental observation of the optically inaccessible B (2)Sigma(u) (+) state, which is found to have an electronic term value of 1.41+/-0.05 eV.  相似文献   

19.
The mechanisms that are responsible for the rapid deactivation of the (1)npi and( 1)pipi excited singlet states of the 9H isomer of adenine have been investigated with multireference ab initio methods (complete-active-space self-consistent-field (CASSCF) method and second-order perturbation theory based on the CASSCF reference (CASPT2)). Two novel photochemical pathways, which lead to conical intersections of the S(1) excited potential-energy surface with the electronic ground-state surface, have been identified. They involve out-of-plane deformations of the six-membered aromatic ring via the twisting of the N(3)C(2) and N(1)C(6) bonds. These low-lying conical intersections are separated from the minimum energy of the lowest ((1)npi) excited state in the Franck-Condon region by very low energy barriers (of the order of 0.1 eV). These properties of the S(1) and S(0) potential-energy surfaces explain the unusual laser-induced fluorescence spectrum of jet-cooled 9H-adenine, showing sharp structures only in a narrow energy interval near the origin, as well as the extreme excess-energy dependence of the lifetime of the singlet excited states. It is suggested that internal-conversion processes via conical intersections, which are accessed by out-of-plane deformation of the six-membered ring, dominate the photophysics of the lowest vibronic levels of adenine in the gas phase, while hydrogen-abstraction photochemistry driven by repulsive (1)pisigma states may become competitive at higher excitation energies. These ultrafast excited-state deactivation processes provide adenine with a high degree of intrinsic photostability.  相似文献   

20.
A tunable dye laser has been used to excite single vibronic features in the low-pressure vapor of CrO2Cl2. The fluorescence spectrum, fluorescence excitation spectrum and time-resolved fluorescence decay are discussed. It is shown that the active ν′4 and ν″4 modes are the same frequency in the gas phase, thus collapsing the sequence congestion normally observed in gas-phase spectra. This degeneracy makes impossible the excitation of single vibronic levels. It is shown that the fluorescence lifetime of the excited state in all except the vibrationally cold level is severely shortened by unimolecular radiationless decay. This radiationless rate is strongly dependent upon the partitioning of energy into various excited-state modes. The radiative lifetime of the vibrationally cold excited state is (1.34 ± 0.08) μs and the apparent bimolecular quenching rate is (5.9 ± 0.2) × 10?10 cm3/molecules. No evidence of emission from the lowest-energy excited electronic state recently reported by Spoliti [J. Mol. Spectrosc. 52 (1973) 146] is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号