首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron oxide nanoparticles, in the form of sub-100-nm clusters, were synthesized in the presence of poly(acrylic acid) (PAA) or poly(styrene sulfonate-alt-maleic acid) (PSS-alt-MA) to provide electrosteric stabilization. The superparamagnetic nanoclusters were characterized using a superconducting quantum interference device (SQUID), transmission electron microscopy (TEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and zeta potential measurements. To anchor the polymer shell on the nanoparticle surface, the polymer was cross-linked for a range of cross-linking densities. For nanoclusters with only 12% (w/w) PSS-alt-MA, electrosteric stabilization was sufficient even in 8 wt % NaCl. For PAA, the cross-linked polymer shell was essentially permanent and did not desorb even upon dilution of the nanoparticles for iron oxide concentrations down to 0.014 wt %. Without cross-linking, over half of the polymer desorbed from the particle surfaces. This general approach of the adsorption of polymer stabilizers onto nanoparticles followed by cross-linking may be utilized for a wide variety of cross-linkable polymers without the need to form covalent bonds between the nanoparticles and polymer stabilizer. Thus, this cross-linking approach is an efficient and inexpensive method of stabilizing nanoparticles for large-scale applications, including the electromagnetic imaging of subsurface reservoirs, even at high salinity.  相似文献   

2.
Ligands on the nanoparticle surface provide steric stabilization, resulting in good dispersion stability. However, because of their highly dynamic nature, they can be replaced irreversibly in buffers and biological medium, leading to poor colloidal stability. To overcome this, we report a simple and effective cross-linking methodology to transfer oleate-stabilized upconverting NaYF(4) core/shell nanoparticles (UCNPs) from hydrophobic to aqueous phase, with long-term dispersion stability in buffers and biological medium. Amphiphilic poly(maleic anhydride-alt-1-octadecene) (PMAO) modified with and without poly(ethylene glycol) (PEG) was used to intercalate with the surface oleates, enabling the transfer of the UCNPs to water. The PMAO units on the phase transferred UCNPs were then successfully cross-linked using bis(hexamethylene)triamine (BHMT). The primary advantage of cross-linking of PMAO by BHMT is that it improves the stability of the UCNPs in water, physiological saline buffers, and biological growth media and in a wide range of pH values when compared to un-cross-linked PMAO. The cross-linked PMAO-BHMT coated UCNPs were found to be stable in water for more than 2 months and in physiological saline buffers for weeks, substantiating the effectiveness of cross-linking in providing high dispersion stability. The PMAO-BHMT cross-linked UCNPs were extensively characterized using various techniques providing supporting evidence for the cross-linking process. These UCNPs were found to be stable in serum supplemented growth medium (37 °C) for more than 2 days. Utilizing this, we demonstrate the uptake of cross-linked UCNPs by LNCaP cells (human prostate cancer cell line), showing their utility as biolabels.  相似文献   

3.
The photoluminescence characteristic of the SnO(x)/Sn nanoparticles deposited on a solid supported liquid-crystalline phospholipid (1,2-dioleoyl-sn-glycero-3-phosphocholine) membrane was probed after plasma etching the nanoparticle monolayer. It was shown that the plasma etching of the nanoparticle surface greatly altered the particle morphology and enhanced the PL effect, especially when the particle size was below 10 nm in spite of strong presence of surrounding carbon. The enhancement mainly stemmed from the growth of a new PL peak due to the additional defect states produced on the nanoparticle surface by the plasma etching. It was also shown that hydrating the SnO(x)/Sn nanoparticles similarly improved the PL response of the nanoparticles as the hydration produced an additional oxygen-rich oxide layer on the particle surface.  相似文献   

4.
Dissipative particle dynamics simulations were used to study the effects of mixing time, solute solubility, solute and diblock copolymer concentrations, and copolymer block length on the rapid coprecipitation of polymer-protected nanoparticles. The simulations were aimed at modeling Flash NanoPrecipitation, a process in which hydrophobic solutes and amphiphilic block copolymers are dissolved in a water-miscible organic solvent and then rapidly mixed with water to produce composite nanoparticles. A previously developed model by Spaeth et al. [J. Chem. Phys. 134, 164902 (2011)] was used. The model was parameterized to reproduce equilibrium and transport properties of the solvent, hydrophobic solute, and diblock copolymer. Anti-solvent mixing was modeled using time-dependent solvent-solute and solvent-copolymer interactions. We find that particle size increases with mixing time, due to the difference in solute and polymer solubilities. Increasing the solubility of the solute leads to larger nanoparticles for unfavorable solute-polymer interactions and to smaller nanoparticles for favorable solute-polymer interactions. A decrease in overall solute and polymer concentration produces smaller nanoparticles, because the difference in the diffusion coefficients of a single polymer and of larger clusters becomes more important to their relative rates of collisions under more dilute conditions. An increase in the solute-polymer ratio produces larger nanoparticles, since a collection of large particles has less surface area than a collection of small particles with the same total volume. An increase in the hydrophilic block length of the polymer leads to smaller nanoparticles, due to an enhanced ability of each polymer to shield the nanoparticle core. For unfavorable solute-polymer interactions, the nanoparticle size increases with hydrophobic block length. However, for favorable solute-polymer interactions, nanoparticle size exhibits a local minimum with respect to the hydrophobic block length. Our results provide insights on ways in which experimentally controllable parameters of the Flash NanoPrecipitation process can be used to influence aggregate size and composition during self-assembly.  相似文献   

5.
A mercapto derivative of diacetylene was used as the hydrophilic ligand to prepare Janus nanoparticles by using hydrophobic hexanethiolate-protected gold (AuC6, diameter 5 nm) nanoparticles as the starting materials. The amphiphilic surface characters of the Janus nanoparticles were verified by contact angle measurements, as compared to those of the bulk-exchange counterparts where the two types of ligands were distributed rather homogeneously on the nanoparticle surface. Dynamic light scattering studies showed that the Janus nanoparticles formed stable superstructures in various solvent media that were significantly larger than those by the bulk-exchange counterparts. This was ascribed to the amphiphilic characters of the Janus nanoparticles that rendered the particles to behave analogously to conventional surfactant molecules. Notably, because of the close proximity of the diacetylene moieties on the Janus nanoparticle surface, exposure to UV irradiation led to effective covalent cross-linking between the diacetylene moieties of neighboring ligands, as manifested in UV-vis and fluorescence measurements where the emission characteristics of dimers and trimers of diacetylene were rather well-defined, in addition to the monomeric emission. In contrast, for bulk-exchange nanoparticles, no trimer emission could be identified, and the intensity of dimer emission was markedly lower (though the intensity increased with increasing diacetylene coverage on the particle surface) under the otherwise identical experimental conditions. This is largely because the diacetylene ligands were distributed on the entire particle surface, and it was difficult to find a large number of ligands situated closely so that the stringent topochemical principles for the polymerization of diacetylene derivatives could be met. Importantly, the cross-linked Janus nanoparticles were found to exhibit marked enhancement of the structural integrity, which was attributable to the impeded surface diffusion of the thiol ligands on the nanoparticle surface, as manifested in fluorescence measurements of aged nanoparticles.  相似文献   

6.
This work describes the formation of water-soluble hydrophilic nanoparticles from biosynthetic poly-γ-glutamic acid (PGA). Nanoparticles were formed by cross-linking using 2,2′-(ethylenedioxy) diethylamine in the presence of water-soluble carbodiimide. The structure was determined by nuclear magnetic resonance spectroscopy and the particle size by transmission electron microscopy (TEM), size exclusion chromatography (SEC), and dynamic light-scattering (DLS) measurements. The results from TEM, SEC, and DLS reveal that the particle size depends on the ratio of cross-linking. Particle size values measured by TEM were between 20 and 90 nm. Formation of cross-linked nanoparticles results in a dramatic viscosity drop compared to the viscosity of the corresponding solution of the parent PGA. The viscosity and DLS experiments disclose an intriguing interplay between intrachain and interchain cross-linking of the polymer chains, depending on the cross-linker density and polymer concentration. The SEC measurements show that the retention time of the major portion of particles increase because of the higher cross-linking ratio. At moderate cross-linker concentration, intramolecular cross-linking is the dominant process, whereas at higher cross-linker densities, the interpolymer cross-linking plays an important role. As a result, large clusters are also formed.  相似文献   

7.
Encapsulating Au nanoparticles within a shell of photo-cross-linked block copolymer surfactant dramatically improves the physical and chemical stability of the nanoparticles, particularly when they are applied as bioconjugates. Photo-cross-linkable block copolymer amphiphiles [polystyrene-co-poly(4-vinyl benzophenone)]-block-poly(acrylic acid) [(PS-co-PVBP)-b-PAA] and [poly(styrene)-co-poly(4-vinyl benzophenone)]-block-poly(ethylene oxide) [(PS-co-PVBP)-b-PEO] were assembled around Au nanoparticles ranging from 12 to 108 nm in diameter. UV irradiation cross-linked the PVBP groups on the polymer to yield particles that withstood extremes of temperature, ionic strength, and chemical etching. Streptavidin was attached to [PS-co-PVBP]-b-PAA-coated particles using the same noncovalent and covalent conjugation protocols used to bind biomolecules to divinylbenzene-cross-linked PS microspheres. We expect that these particles will be useful as plasmonic, highly light-scattering and light-absorbing analogs to fluorescently labeled PS nanospheres.  相似文献   

8.
Well-defined colloidal polymeric nanoparticles are important in advanced biomedical and optical technologies. We report a facile microwave methodology to prepare narrowly dispersed cross-linked polymeric nanoparticles at high solids content through a surfactant-free emulsion polymerization process. The nanoparticle size was controlled by using cross-linkers with enhanced reactivity through a one-step microwaving process, significantly simplifying the nanoparticle synthetic process. The successful size control was realized by confining the cross-linking to intraparticle cross-linking rather than interparticle cross-linking. We also discovered that the superheating/dielectric heating effect associated with microwave irradiation could be utilized to effectively reduce the nanoparticle size.  相似文献   

9.
Morphology control is important for practical applications of composite materials that consist of functional polymers and nanoparticles. Toward that end, block copolymers provide useful templates to arrange nanoparticles in the scaffold of self-organized polymer microdomains. This paper reports theoretical predictions for the distribution of nanoparticles in the lamellar structures of symmetric diblock copolymers on the basis of a polymer density functional theory (DFT) and the potential distribution theorem (PDT). The DFT predicts periodic spacing of lamellar structures in good agreement with molecular dynamics simulations. With the polymer structure from DFT as the input, the PDT is used to examine the effects of particle size, surface energy, polymer chain length, and compressibility on the distribution of nanoparticles in the limit of low particle density. It is found that the nanoparticle distribution depends not only on the particle size and surface energy but also on the local structure of the microdomain interface, polymer chain length, and compressibility. The theoretical predictions are compared well with experiments and simulations.  相似文献   

10.
A novel method for synthesizing polymer nanopods from a linear polymer bearing pendant propargyl ether groups, using gold nanoparticles as both the template and the catalyst for the cross-linking reaction, is reported. The transformations involved in the cross-linking process are unprecedented on the surface of a gold particle. A tentative cross-linking mechanism is proposed.  相似文献   

11.
The size of gold nanoparticle aggregates was controlled by manipulating the interparticle interaction. To manipulate the interparticle interaction of gold nanoparticles prepared by citrate reduction, we applied the substitutive adsorption of benzyl mercaptan on the particle surface in the absence of the cross-linking effect. Various experimental techniques such as UV-vis absorption spectroscopy, surface-enhanced Raman scattering, quasi-elastic light scattering, and zeta-potential measurement were used to characterize the nanoparticle aggregates. Our results suggest that the replacement of the trivalent citrate ions adsorbed on the nanoparticle surface with monovalent benzyl mercaptan ions should destabilize the particles, causing aggregation and hence the increase in the size of nanoparticle aggregates. These experimental results were successfully rationalized by the classical DLVO (Derjaguin-Landau-Vervey-Overbeek) theory that describes the interparticle interaction and colloidal stability in solution. Our findings suggest that the control of surface potential is crucial in the design of stable gold nanoparticle aggregates.  相似文献   

12.
This paper describes the synthesis of gold nanoparticles stabilized by two series of new dendritic disulfide ligands with alkene groups at their peripheries. Intraparticle cross-linking of the alkene groups around the periphery of each nanoparticle was achieved by Grubbs' metathesis. It was demonstrated that cross-linking of the organic ligand has no effect on the size or morphology of the inorganic gold core as determined by TEM and UV-vis measurements. However, the introduction of cross-linking at the surface of the ligand enhances the stability of the gold nanocore toward chemical etchant agents (NaCN) and thermal treatment. The impact of cross-linking on nanoparticle stability is greater when the cross-linking is closer to the nanoparticle surface (i.e., using lower generation dendritic ligands). Attempts to perform further synthetic transformation on the hybrid materials in order to remove the gold core led to insoluble products composed predominantly of the dendritic ligand.  相似文献   

13.
The organic layer of thiol-protected Au nanoparticles (ca.3 nm in diameter) was cross-linked using ring-opening metathesis polymerization or Michael addition of polyfunctional amines. The shell cross-linked nanoparticles showed increased stability toward thermal treatment and oxidative etching. The Au core of cross-linked nanoparticles was removed in an attempt to prepare hollow capsules. However, Au etching resulted in insoluble materials.  相似文献   

14.
The structure of a polystyrene matrix filled with tightly cross-linked polystyrene nanoparticles, forming an athermal nanocomposite system, is investigated by means of a Monte Carlo sampling formalism. The polymer chains are represented as random walks and the system is described through a coarse grained Hamiltonian. This approach is related to self-consistent-field theory but does not invoke a saddle point approximation and is suitable for treating large three-dimensional systems. The local structure of the polymer matrix in the vicinity of the nanoparticles is found to be different in many ways from that of the corresponding bulk, both at the segment and the chain level. The local polymer density profile near to the particle displays a maximum and the bonds develop considerable orientation parallel to the nanoparticle surface. The depletion layer thickness is also analyzed. The chains orient with their longest dimension parallel to the surface of the particles. Their intrinsic shape, as characterized by spans and principal moments of inertia, is found to be a strong function of position relative to the interface. The dispersion of many nanoparticles in the polymeric matrix leads to extension of the chains when their size is similar to the radius of the dispersed particles.  相似文献   

15.
Composite materials consisting of nanoscale gold particles and protective polymer shells were designed and tested as catalysts in various chemical reactions. Initially, the systematic incorporation of multiple gold nanoparticles into a poly(N-isopropylacrylamide) particle was achieved by an in situ method under light irradiation. The degree of gold nanoparticle loading, along with the structural and morphological properties, was examined as a function of the amount of initial gold ions and reducing agent. As these gold nanoparticles were physically-embedded within the polymer particle in the absence of strong interfacial interactions between the gold nanoparticles and polymer matrix, the readily-accessible surface of the gold nanoparticles with a highly increased stability allowed for their use as recyclable catalysts in oxidation, reduction, and coupling reactions. Overall, the ability to integrate catalytically-active metal nanoparticles within polymer particles in situ allows for designing novel composite materials for multi-purpose catalytic systems.  相似文献   

16.
Nanoparticles containing fluorine-18 were prepared from block copolymers made by ring opening metathesis polymerization (ROMP). Using the fast initiating ruthenium metathesis catalyst (H2IMes)(pyr)2(Cl)2Ru=CHPh, low polydispersity amphiphilic block copolymers were prepared from a cinnamoyl-containing hydrophobic norbornene monomer and a mesyl-terminated PEG-containing hydrophilic norbornene monomer. Self-assembly into micelles and subsequent cross-linking of the micelle cores by light-activated dimerization of the cinnamoyl groups yielded stable nanoparticles. Incorporation of fluorine-18 was achieved by nucleophilic displacement of the mesylates by the radioactive fluoride ion with 31% incorporation of radioactivity. The resulting positron-emitting nanoparticles are to be used as in vivo molecular imaging agents for use in tumor imaging.  相似文献   

17.
以水溶性聚合物为保护剂,采用化学还原法制备了银纳米粒子,分别利用透射电子显微镜、紫外可见光谱、同步光散射光谱等手段对其进行了表征,并探索了制备银纳米粒子的最佳实验条件。通过将银纳米粒子-聚合物溶液进行脱水,得到含有银纳米粒子的固态聚合物膜。将固态聚合物膜重新溶解于水,其水溶液的紫外可见光谱与脱水前的溶液进行了比较,发现两者性质并无明显差异。因此,将银纳米粒子分散固定在聚合物膜中是一种崭新而有效的银纳米粒子制备和存储方法。  相似文献   

18.
The size, charge, and stability of colloidal suspensions of magnetic nanoparticles with narrow size distribution and grafted with poly(ethylene glycol)-silane of different molecular weights were studied in water, biological buffers, and cell culture media. X-ray photoelectron spectroscopy provided information on the chemical nature of the nanoparticle surface, indicating the particle surfaces consisted of a mixture of amine groups and grafted polymer. The results indicate that the exposure of the amine groups on the surface decreased as the molecular weight of the polymer increased. The hydrodynamic diameters correlated with PEG graft molecular weight and were in agreement with a distributed density model for the thickness of a polymer shell end-grafted to a particle core. This indicates that the particles obtained consist of single iron oxide cores coated with a polymer brush. Particle surface charge and hydrodynamic diameter were measured as a function of pH, ionic strength, and in biological buffers and cell culture media. DLVO theory was used to analyze the particle stability considering electrostatic, magnetic, steric, and van der Waals interactions. Experimental results and colloidal stability theory indicated that stability changes from electrostatically mediated for a graft molecular weight of 750 g/mol to sterically mediated at molecular weights of 1000 g/mol and above. These results indicate that a graft molecular weight above 1000 g/mol is needed to produce particles that are stable in a wide range of pH and ionic strength, and in cell culture media.  相似文献   

19.
Cross-linked poly(methyl methacrylate) particles were prepared via dispersion polymerization in supercritical carbon dioxide (scCO2) using poly(heptadecafluorodecyl methacrylate) (PHDFDMA) and 2,2′-azobisisobutyronitrile as the dispersant and the initiator, respectively. The following chemicals were used as cross-linking agents: ethylene glycol dimethacrylate (EGDMA), 1,4-buthanediol di(meth)acrylate (1,4-BD(M)A), and trimethylolpropane trimethacrylate. PHDFDMA was synthesized by solution polymerization in scCO2. We investigated the effect of the chemical structure, concentration of the cross-linking agents, reaction pressure, and CO2 density on the morphology, the polydispersity, and the cross-linking density of polymer particles. The resulting polymer particle was characterized by field emission SEM, differential scanning calorimetry, and thermal gravimetric analysis. The cross-linked PMMA particles is more agglomerate as the cross-linking agent concentration increased and as pressure decreased at constant temperature. Glass-transition temperature (T g) of the resulting polymer increased as the cross-linking agent increased with temperature and pressure increasing at the same CO2 density. Decomposition temperature is slightly increased as 1,4-BDA concentration increased. From these results, we can confirm that the thermal stability of the polymer increased as the cross-linking agent and EGDMA is the best cross-linking agent in term of the thermal stability.  相似文献   

20.
We report the fabrication and characterization of thermally cross-linked superparamagnetic iron oxide nanoparticles (TCL-SPION) and their application to the dual imaging of cancer in vivo. Unlike dextran-coated cross-linked iron oxide nanoparticles, which are prepared by a chemical cross-linking method, TCL-SPION are prepared by a simple, thermal cross-linking method using a Si-OH-containing copolymer. The copolymer, poly(3-(trimethoxysilyl)propyl methacrylate-r-PEG methyl ether methacrylate-r-N-acryloxysuccinimide), was synthesized by radical polymerization and used as a coating material for as-synthesized magnetite (Fe3O4) SPION. The polymer-coated SPION was further heated at 80 degrees C to induce cross-linking between the -Si(OH)3 groups in the polymer chains, which finally generated TCL-SPION bearing a carboxyl group as a surface functional group. The particle size, surface charge, presence of polymer-coating layers, and the extent of thermal cross-linking were characterized and confirmed by various measurements, including dynamic light scattering, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The carboxyl TCL-SPION was converted to amine-modified TCL-SPION and then finally to Cy5.5 dye-conjugated TCL-SPION for use in dual (magnetic resonance/optical) in vivo cancer imaging. When the Cy5.5 TCL-SPION was administered to Lewis lung carcinoma tumor allograft mice by intravenous injection, the tumor was unambiguously detected in T2-weighted magnetic resonance images as a 68% signal drop as well as in optical fluorescence images within 4 h, indicating a high level of accumulation of the nanomagnets within the tumor site. In addition, ex vivo fluorescence images of the harvested tumor and other major organs further confirmed the highest accumulation of the Cy5.5 TCL-SPION within the tumor. It is noteworthy that, despite the fact that TCL-SPION does not bear any targeting ligands on its surface, it was highly effective for tumor detection in vivo by dual imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号