首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纳米科技方兴未艾   总被引:3,自引:0,他引:3  
 最近几年来,纳米科技、纳米科学和纳米技术等新的名词术语在许多国家的报刊、广播和电视等媒体中频频出现,成为一个世界性的热门科技话题.一、什么是纳米科技“纳米”是一个很小的长度计量单位.一纳米(nm)等于十亿分之一米(10-9m),百万分之一毫米或千分之一微米.纳米尺度比原子尺寸略大(约为十几个原子排列起来那么长),大约相当于一根头发丝直径的万分之一.纳米世界是相当微观的世界.只有在科学技术高度发展的今天,人们才有可能踏入纳米世界去探索其中的奥秘.纳米科技是在现代物理学和新兴的高新工程技术相互融合的基础上,于20世纪80年代迅速形成和发展起来的一门在纳米级的规模上构筑的前沿科学技术.  相似文献   

2.
神奇的纳米技术与军事革命   总被引:1,自引:0,他引:1  
 20世纪80年代末,一门新颖、独特、颇具神奇色彩的科学技术---纳米技术悄然兴起,并立即引起世界各国的广泛关注和重视。短短十几年中,纳米技术在世界范围内的研究和应用得到了卓有成效的发展,并已成为21世纪的前沿战略科技。一、神奇的纳米技术1nm=10-9m。所谓纳米技术,是在0.1~100nm的尺度空间内研究电子、原子和分子的运动规律及特性,通过微观环境下操作单个原子、分子或原子团、分子团,以制造具有特定功能的材料或器件为最终目的的一门崭新技术。它包括纳米电子技术、纳米材料技术、纳米机械制造技术、纳米显微技术及纳米物理学和纳米生物学等不同的学科和领域。  相似文献   

3.
纳米技术与我们的生活   总被引:2,自引:0,他引:2  
 近年以来,“纳米技术”这一词汇不断见诸于媒体,“纳米概念”也被炒得火热。随着“纳米”这个概念逐渐被越来越多的人所认识,纳米产品也已经不再是可望而不可及了。纳米,这个小而又小的尺度永远不可能用肉眼看见,但纳米技术的应用正在改变和即将改变我们的生活。一、纳米与纳米技术“纳米”是一种几何尺寸的度量单位,1纳米为百万分之一毫米,也就是十亿分之一米,约相当于45个原子串在一起的长度,更直观地讲,头发丝的直径就有七八万纳米,因此,纳米世界是一个肉眼看不到的相当微观的世界。  相似文献   

4.
纳米技术的进展及军用前景   总被引:2,自引:0,他引:2  
 近来科学家们纷纷预测:“纳米技术将是21世纪科技革命的生力军”、“纳米技术将像微电子技术引发科技革命一样,成为对世纪信息时代的核心”。 2000年1月,美国政府发布了《国家纳米技术计划》,此计划被认为是面向未来的重大战略举措。克林顿总统于2000年1月21日在加利福尼亚大学理工学院演讲中提到:“我的2001年预算案支持一个价值5亿美元全新的国家纳米技术启动计划……使人类有能在原子和分子水平上操纵物质的能力。……”显然,美国政府已把崭露头角的纳米科学和纳米工程放在科学发展的优先考虑地位。  相似文献   

5.
 “毫无疑问,当我们得以对细微尺度的事物加以操纵的话,将大大扩充我们可能获得物性的范围。”1959年,理查德·费恩曼最早地提出了纳米尺度上的科学和技术问题。40年后的今天,“纳米热”遍及全球,声势夺人。科学家和各国政府将纳米科技和信息技术、生物技术同列为引导21世纪工业革命的主流和关键技术。1.何为纳米科技纳米科技是指在纳米尺度上研究物质的特性和相互作用,以及利用这些特性开发新产品的一门多学科交叉融合的科学和技术。纳米尺度指显微结构小于100nm,包括微粒尺寸、晶粒尺寸、晶界带宽、第二相分布、气孔尺寸、缺陷尺寸等均达到纳米水平。  相似文献   

6.
 异军突起的纳米技术“纳米”是英文namometer的译名,是一种长度单位,1纳米为百万分之一毫米,即1毫微米,也就是十亿分之一米,约相当于45个原子串起来那么长。纳米结构通常是指尺寸在100纳米以下的微小结构。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,明显表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。纳米技术其实就是一种用单个原子、分子制造物质的技术。从迄今为止的研究状况看,纳米技术分为三种。  相似文献   

7.
 纳米科技于20世纪70年代兴起,进入21世纪越来越被大家耳熟。纳米科技在促进科技进步,提高社会文明程度,改善人类生存质量,更新对物质世界的认知及观念上扮演了举足轻重的角色。纳米是长度单位。一纳米为一米的十亿分之一,如果你的拇指指甲盖宽14毫米,这个比例就相当于拇指指甲盖宽度与地球直径间的比例。纳米科技所接触、研究、开发的是100纳米~0.1纳米范围内物质的性质和应用。一个分子或一个原子大小的数量级大致在10纳米。因此,纳米科技也可以说是在分子水平上观察、分析、研究物质的物理、化学性质并加以开发利用。  相似文献   

8.
纳米材料的分类及其物理性能   总被引:7,自引:0,他引:7  
 纳米技术是20世纪80年代末迅速发展起来的一门交叉性很强的综合学科,是在0.1-100纳米尺度上研究和利用原子与分子的结构,特性及其相互作用的高新技术。著名的诺贝尔奖获得者费恩曼在60年代就预言:如果对物体微小规模上的排列加以某种控制的话,物体就能得到大量的异乎寻常的特性。他所说的物体就是现在的纳米材料。纳米材料研究是目前材料科学研究的一个热点,纳米技术被公认为是21世纪最具有前途的科研领域。1.纳米材料的分类以“纳米”来命名的材料是在20世纪80年代,它作为一种材料的定义把纳米颗粒限制到1-100nm范围。  相似文献   

9.
 15世纪10~40年代,是“日心说”形成和发展时期。哥白尼对火星、金星视运动的研究,是确立“日心说”的线索和依据。  相似文献   

10.
纳米电子学研究进展   总被引:2,自引:0,他引:2  
 一、跨世纪的新学科--纳米科技 原子是组成自然界的基本单位,原子的不同方式排列使自然界多姿多彩。纳米科技是在0.1-100纳米(1纳米=10-9米)尺度上研究和利用原子与分子的结构、特征及其相互作用的高新科技。它的诞生使人类改造自然的能力延伸到分子和原子。它的最终目标是直接以分子、原子在纳米尺度上制造具有特定功能的产品,实现生产方式的飞跃。因此,这一兴起于本世纪90年代的纳米科学技术,必将雄踞于21世纪,对人类产生重大而深远的影响。  相似文献   

11.
纳米材料的奇异特性   总被引:1,自引:0,他引:1  
纳米是一个长度计量单位,1纳米等于10^-9米,纳米结构通常是指尺寸在100纳米以下(1-100nm)的微小结构,纳米技术是在纳米尺寸上对物质和材料进行研究处理的技术,其本质上是一种用单个原子、分子制造物质的科学技术。目前,世界上已形成发展纳米科技的“三大板块”的格局,即美国、亚洲和欧盟,纳米科技的研究和发展已进入一个新阶段,纳米技术将引起一场各个领域生产方式的变革,也将改变未来人们的生活方式和工作方式。  相似文献   

12.
表面增强拉曼散射(SERS)光谱技术是一种高灵敏度的检测技术,已在社会发展的多个领域显示出潜在的应用前景。SERS活性基底的大面积、低成本、可控制备是表面增强拉曼散射光谱学研究领域的热点之一。利用溶液法将直径小于5 nm的金纳米团簇旋涂成膜,调控退火温度和时间,将金纳米团簇融合组装成随机分布的金纳米岛。由于融合组装过程在150~210 ℃范围缓慢,控制条件可实现具有高密度增强“热点”的SERS基底,方法简单、成本低廉、面积大、均匀性高。我们利用该方法可重复性获得了性能优良的SERS基底。该基底对表面吸附的单分子层,具有强烈的表面增强拉曼散射光谱响应,150~210 ℃退火样品的宏观增强因子106~107量级。研究表明:相同条件下150~180 ℃退火,金纳米团簇首先融合成直径10~20 nm细小金纳米岛;退火温度190~210 ℃时,形成10~20 nm细小金纳米岛与50~70 nm金纳米岛混合并存的现象。拉曼光谱表征显示:大、小金纳米岛混合并存样品的宏观增强因子高于细小金纳米岛组成的样品。经220 ℃退火后,金纳米团簇完全融合成直径50~100 nm的金纳米岛,岛间距也随之增大,导致纳米岛之间的电磁场强度呈指数衰减,220 ℃退火的样品具有较低的增强因子。本论文揭示了金纳米团簇的缓慢自组装机制,分析了金纳米岛的形貌与表面增强拉曼散射光谱的关系,为该基底的应用研究奠定基础。  相似文献   

13.
纳米科学技术及纳米材料科学的发展趋势   总被引:2,自引:0,他引:2  
 在当代,随着高新技术的发展,材料和器件的微型化成为一个重要的发展方向。这样在从宏观走向微观的过程中,出现了介于宏观与微观之间的纳米学。一、纳米科学技术的含义和包含范围纳米是物理学中一个长度计量单位,即1纳米(nm)=10-9米(m)。纳米尺度(0.1~100纳米)比原子尺寸略大(约为十几个原子排列起来那么长),大约相当于一根头发丝直径的万分之一。纳米世界是相当微观的世界。纳米科技包括:纳米电子学、纳米物理学、纳米化学、纳米材料学、纳米生物学、纳米显微学、纳米机械学、纳米加工和纳米测量等多种学科。  相似文献   

14.
颗粒大、圆度高并具有浓郁颜色的淡水有核养殖珍珠(商贸名称为“爱迪生”珍珠)为珍珠市场提供了更高的品质与价值,然而受利益的驱使,染色的有核养殖珍珠也逐渐流入市场,扰乱了消费者的健康消费,在一定程度上阻碍了“爱迪生”珍珠产业的良性发展。本文利用红外光谱仪、紫外-可见分光光度计和光致发光光谱仪对养殖和染色“爱迪生”珍珠进行了系统的谱学研究,并将其与海水珍珠、染色海水珍珠进行了比较。结果表明:(1)染色与养殖“爱迪生”珍珠在红外光谱上均显示1 445,882和725 cm-1处的文石振动峰,其中染色“爱迪生”珍珠在3 800 cm-1处均出现宽缓的弱吸收峰;(2)染色“爱迪生”珍珠的紫外可见光光谱中280 nm处的吸收峰明显弱于养殖“爱迪生”珍珠,染色后的“爱迪生”珍珠整体反射率降低,可能与染剂使珍珠中的蛋白质分子受损有关。染黄色“爱迪生”珍珠缺失养殖橙黄色“爱迪生”珍珠在360~380 nm处的吸收峰,而与染色海水金珠430 nm处的强吸收峰相似。染黑色“爱迪生”珍珠在425 nm处有吸收峰,染色海水黑珍珠在480和645 nm处有吸收峰,养殖海水黑珍珠在702 nm处有吸收峰,三者图谱的差异可能为各自的染料不同所致;(3)养殖“爱迪生”珍珠在光致发光光谱中450~550 nm范围内可见一组吸收峰,染色“爱迪生”珍珠的发光中心向红区偏移且在650 nm附近出现强度不等的与染色剂相关的吸收峰,染色海水金珠也在600 nm处有和染色剂有关的吸收峰。  相似文献   

15.
“黑青”指颜色近黑色,主要成分为透闪石的青玉。“黑碧”指颜色近黑色,主要成分为阳起石的碧玉。采用电子探针、激光剥蚀电感耦合等离子体质谱仪和红外光谱测试分析手段,确定“黑青”“黑碧”的矿物种属。采用拉曼光谱、显微紫外-可见分光光度计、红外光谱对“黑青”“黑碧”的谱学鉴别特征进行探究。“黑青”为标准透闪石拉曼谱峰,“黑碧”的谱峰位置与“黑青”存在几个波数的偏差,向波数小的方向移动。可见-近红外波段,“黑青”出现445 nm吸收峰,680和940 nm宽吸收带,为Fe2+和Fe3+作用;“黑碧”出现445 nm吸收峰,660和690 nm双吸收峰以及970 nm吸收峰,为Fe2+,Fe3+,Cr3+作用。显微紫外-可见光谱可分析到样品的近红外区,“黑青”在1 397,2 310,2 387和2 466 nm出现强吸收峰,1 915和2 120 nm出现弱吸收峰;“黑碧”在1 400,2 313和2 394 nm出现吸收峰。红外光谱分析“黑青”在5 225,4 738,4 692,5 349,4 317,4 190和4 064 cm-1存在吸收峰;“黑碧”在4 708,4 307,4 178和4 031 cm-1存在吸收峰。显微紫外-可见光谱与红外光谱分析结果虽然存在小的差异,但基本保持一致,以红外光谱分析结果为准。将透闪石质的“黑青”、阳起石质的“黑碧”、广西大化阳起石质玉进行对比,综合红外光谱和显微紫外-可见光谱分析结果得出“黑青”(透闪石)与“黑碧”(阳起石)近红外光谱的鉴别特征:“黑青”(透闪石)在4 800~4 600 cm-1存在两个吸收峰,4 350~4 300 cm-1存在分裂双吸收峰;“黑碧”(阳起石)在4 800~4 600 cm-1存在一个弱吸收峰,4 350~4 300 cm-1存在一个吸收单峰。且“黑碧”(阳起石)的近红外吸收峰相较于“黑青”(透闪石)整体向低波数方向移动。  相似文献   

16.
 我国载人航天事业起步于20世纪50年代,60年代中国航天人研制出一种三组火箭作为运载工具,将自己的卫星“东方红一号”送上天,70~90年代“长征号”火箭在多次失败和成功中日益成熟。1992年我国确定了“三步走”的载人航天发展战略:第一步研制载人飞船,第二步实现空间交会对接,第三步建立长期有人照料的空间站。1999年11月20日6时30分,中国第一艘载人航天试验飞船“神舟一号”实验成功,于21日3时41分,在内蒙古中部地区成功着陆回收。2001年1月10日1时0分,我国自行研制的“神舟二号”飞船在酒泉卫星发射中心进行载人航天试验,标志着我国航天事业向实现载人飞行迈出了可喜的一步。  相似文献   

17.
 一、科学巨匠遭冷遇,柳暗花明又一村著名物理学家,诺贝尔奖获得者理查德·费恩曼在1959年12月29日召开的美国物理年会上满怀激情地发表了《底层大有可为》的报告,大胆提出“用原子搭积木”的设想。他说:“当我们深入并游荡在原子周围,我们将按照不同的定律活动,会遇到许许多多新奇的事情,能以全新的方式生产,完成异乎寻常的工作。”并提出“我们为什么不可以从单个分子甚至原子开始进行组装,达到我们的要求?”当时连分子、原子是什么样都看不着,谈何对原子进行操纵组装呢?简直是痴人说梦。  相似文献   

18.
 纳米材料的含义及其发展背景纳米是一种长度单位,1纳米等于10-9米(即十亿分之一米)。当物质处于纳米级(1~100nm)时,因其独特的结构使之表现出光、电、热、磁和生物活性等特殊功能,人们将这些特殊功能应用于传统工业领域,以改进产品性能、提高质量和降低成本。这种既具不同于原来组成的原子、分子,也不同于宏观物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。  相似文献   

19.
 纳米(nm),它与米、厘米、毫米一样,是几何大小的量度单位,1nm=10-9 m,约等于4~5 个原子排列起来的长度。最早提出在纳米尺度上进行科学研究的是著名物理学家、诺贝尔物理学奖获得者理查德·费曼(Richard Feynman)。1959 年,费曼在美国加州理工学院召开的美国物理学会年会上所做的演讲《底部还有很大空间》中提出:能够用宏观的机器来制造比其体积小的机器,而这较小的机器还可能制备更小的机器,这样一步一步达到分子限度。  相似文献   

20.
纳米固体——结构像气体的新型材料   总被引:2,自引:0,他引:2  
 80年代中期联邦德国和美国的一些材料科学家们在实验室里首先制造出了一种新型的固体材料.它是由尺寸仅为几个纳米(10-9米)的超细微粒压制而成的人工凝聚态固体,通常称之为纳米固体材料或纳米尺度材料.对这种材料的研究发现,它具有全新的“类气态”(gas-like)结构,性能十分奇特.如纳米固体铁的断裂应力比常规铁材料一下子提高了近12倍;纳米固体铜又比一般铜材料的热扩散增强了近一倍.更为奇怪的是,普通状态下呈脆性的陶瓷,在纳米固体材料中却能被弯曲,其塑性形变竟然高达100%.这使得长期为增强陶瓷韧性而费尽心血的科学工作者们大为振奋.纳米固体材料的一系列特性,引起了科学家们的浓厚兴趣,并积极开展了对这种材料的结构特点、制造方法、特性和应用的研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号