首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
制备了柴油/复合表面活性剂/正戊醇/MnCl2盐水五元微乳液;研究了MnCl2浓度、表面活性剂浓度及正戊醇浓度对五元微乳液体系中相微乳液的形成和鱼尾相图的影响.结果表明,用MnCl2扫描时形成的中相微乳液范围较窄;在鱼尾相图中,当复合表面活性剂D0821(双(C8-10烷基)二甲基氯化铵)和AEO-3(脂肪醇聚氧乙烯醚)的质量比为4∶6时,形成单相微乳液的表面活性剂效率最高,最佳表面活性剂的质量分数为8.3%.  相似文献   

2.
New non-ionic microemulsions consisting of pentaethyleneglycol dodecyl ether, water, and 1-chloroalkanes were prepared, and their phase behavior was studied. A homologous series of five different 1-chloroalkanes from 1-chlorooctane to 1-chlorohexadecane was studied. The phase behavior of the microemulsions was determined by vertical sections through the Gibbs' phase prism ("fish" plots), from which valuable information such as the microemulsion balance temperature (T(0)), efficiency of the surfactant (phi*), temperature extension of the three-body phase (DeltaT), mean temperature (T(m)), and the monomeric solubility in oil (phi(mon,oil)) was obtained. The chlorinated alkanes in the microemulsions shift the balance temperature to about 14 degrees C lower compared with their n-alkane counterparts. This indicates the polar nature of the chlorinated oils and their ability to penetrate the surfactant film. The chlorinated alkanes thus behave as short n-alkane molecules and lower the spontaneous curvature of the microemulsion droplets. The efficiency of the surfactant and the monomeric solubility in oil systematically depend on the alkyl chain length of the oil, with the efficiency and solubility decreasing with increasing alkyl chain length of 1-chloroalkane. The size and shape of the microemulsion droplets in the microemulsion phase were studied by small-angle X-ray scattering (SAXS). For a surfactant-to-oil volume fraction ratio of 0.80, the droplets can be described by ellipsoidal shapes, and the size of the droplets increased with increasing alkyl chain length.  相似文献   

3.
Release of nortriptyline hydrochloride from oil-water microemulsions   总被引:1,自引:0,他引:1  
The release of nortritptyline hydrochloride from oil-in-water (o/w) microemulsions (isopropyl myristate as oil, propylene glycol as cosurfactant, polysorbate 80 as surfactant and phosphate buffer, pH 7.4, as the continuous phase) containing increasing concentrations of polyethylene glycol 400, used to facilitate the diffusion of a drug from the inner oily phase of the microemulsion to the outer aqueous phase of such a dispersion system, was studied by determining the permeability constants of the drug through hydrophilic and lipophilic membranes separating the o/w microemulsions from the receiving aqueous phase (phosphate buffer pH 7.4). The permeability of nortriptyline hydrochloride from microemulsions through the lipophilic membrane increased as the concentration of polyethylene glycol 400 in the disperse system increased. The apparent permeability constant for nortriptyline hydrochloride, from the microemulsion without polyethylene glycol, was 1.36 x 10(-3) cm x h(-1), it increased up to 7.80 x 10(-3) cm x h(-1) in the presence of polyethylene glycol at a concentration of 50% (v/v) of the initial volume of the aqueous phase.  相似文献   

4.
以煤油为油相, 十二烷基苯磺酸钠(SDBS)为主表面活性剂, 正戊醇为助表面活性剂, 通过改变NaCl浓度分别制备出上相、 中相和下相3种类型的微乳液, 研究了其对油泥砂中原油的脱除效率, 考察了微乳液类型、 油泥砂处理量、 时间和温度等的影响. 结果表明, 油相在下相微乳液中的脱油效率最高, 在中相中次之, 在上相中最低, 且油相脱油率与油泥砂处理量间具有良好的线性关系; 在所考察的时间(10~60 min)和温度(20~70℃)范围内, 脱油效率变化幅度不显著, 表明该体系可对油泥砂进行常温快速脱油处理.  相似文献   

5.
以环境友好型的Tween80为表面活性剂, 以醇(乙醇、正丁醇、正己醇、正辛醇、正癸醇和异戊醇)为助表面活性剂, 对离子液体1-丁基-3-甲基咪唑六氟磷酸盐(bmimPF6)和甲苯进行了微乳化实验, 绘制了不同条件下Tween80离子液体的微乳体系的拟三元相图, 考察了醇的种类、含量对单相微乳区的影响, 并用电导法研究了在乙醇为助表面活性剂情况下, 单相微乳区的结构转变. 结果表明, 当醇(异戊醇)固定时, 随着表面活性剂/醇的质量比增加, 单相微乳区的面积逐渐增大; 不同链长的直链醇对单相微乳区的面积影响与该醇在离子液体中的溶解情况有关, 单相微乳区的面积随着直链醇链长的增加而越小; 当乙醇作助表面活性剂时, 所得到的单相微乳区的面积最大, 且单相微乳区存在着O/IL(oil-in-ionic liquid)、双连续相和IL/O(ionic liquid-in-oil)三种微结构. 尤其对离子液体微乳体系的电导随油的含量的增加而最初增大的现象进行了解释, 这一现象是由于油主要起到减少离子液体中离子对或离子的积聚, 提高带电离子淌度的作用.  相似文献   

6.
The transition from liquid crystalline to microemulsion phases has been investigated by adding oil to surfactant—alcohol—brine mixtures in two systems containing anionic surfactants. At high salinities where the surfactant is preferentially soluble in oil, addition of oil first causes transition from a lamellar liquid crystal to a water-continuous isotropic phase which exhibits streaming birefringence and probably contains large, anisotropic micelles. This isotropic phase inverts to an oil-continuous microemulsion as oil content further increases. At somewhat lower salinities just below the “optimum” where the surfactant has equal solubilization capacities for oil and brine, the system passes through three three-phase regions as oil is added. In order of increasing oil content, these consist of two microemulsions in equilibrium with a lamellar liquid crystalline phase, the same two microemulsions in equilibrium with excess brine, and a microemulsion in equilibrium with excess oil and excess brine.  相似文献   

7.
Microemulsions have received great attention for applications in transdermal drug delivery. The use of curcumin for treating various skin diseases like scleroderma, psoriasis, and skin cancer was extensively reported. The solubility of curcumin in various oils, surfactants, and cosurfactants was studied herein in order to find the optimal components for a transdermal delivery vehicle. Microemulsion systems composed of eucalyptol, polysorbate 80, ethanol, and water were developed as transdermal delivery vehicles for curcumin. Effects of the microemulsion composition on transdermal curcumin delivery were studied using Franz diffusion cells. The transdermal curcumin flux, permeability coefficient, and enhancement ratio were analyzed to evaluate the effects of eucalyptol/water ratios in the microemulsions. Pseudo-ternary phase diagrams of the eucalyptol microemulsions with various surfactant/cosurfactant ratios (1:1-1:3) were constructed to investigate their phase behaviors. Conductivity, interfacial tension, size, and viscosity data of the microemulsions were used to characterize the physicochemical properties of transdermal vehicles. The influence of the microemulsions on skin histology and on the delivery route was analyzed using hematoxylin/eosin staining and confocal laser scanning microscopy. In conclusion, microemulsions were successfully developed for transdermal curcumin delivery after screening various components and adjusting the oil/water ratios. The curcumin permeation rate of the microemulsion developed was 15.7-fold higher than that of the control (eucalyptol only). These results indicate that an eucalyptol microemulsion system is a promising tool for the percutaneous delivery of curcumin.  相似文献   

8.
The phase behavior of the system isopropyl myristate/medium-chain glyceride/polysorbate 80/water forming both w/o and o/w microemulsions has been studied to develop microemulsion comprising of pharmaceutical excipients. The pseudo-ternary phase diagrams with large monophasic zones and gel formation were realized and several compositions were identified in the phase diagram for rheological, dynamic light scattering (DLS) and calorimetric measurements. The identified systems at different temperatures behaved as Newtonian fluid and the activation parameters for their viscous flow were evaluated. From DLS measurements, hydrodynamic diameter, polydispersity and diffusion coefficient of the microheterogeneous dispersions were determined. The free energy, enthalpy and entropy of solution of the w/o and o/w microemulsions were determined from calorimetric measurements.  相似文献   

9.
Isothermal phase diagrams of the system cetyltrimethylammonium bromide (CTAB)/n‐butanol/n‐octane/water were constructed, and the effect of the oil (n‐octane) contents on the microemulsions was studied at 40 °C. We determined the microemulsion structures of two systems, CTAB/n‐butanol/10% n‐octane/water and sodium dodecyl sulfonate (As)/n‐butanol/20% styrene/water, by conductivity measurements to investigate the polymerization of acrylamide and styrene in the two microemulsion systems. The polymerization kinetics of the water‐soluble monomer acrylamide in CTAB micelles and the different CTAB/n‐butanol/10% n‐octane/water microemulsion media [water‐in‐oil (W/O), bicontinuous (BC), and oil‐in‐water (O/W)] were studied with water‐soluble sodium bisulfite as the initiator. The maximum polymerization rate in CTAB micelles was found at the second critical micelle concentration. A mechanism of polyacrylamide formation and growth was proposed. A connection between the structures of the microemulsions and the polymerization rates was observed; the maximum polymerization rate occurred at two transition points, from W/O to BC and from BC to O/W, and the polyacrylamide molecular weights, which depended on the structures of the microemulsions, were also found. A square‐root dependence of the polymerization rates on the initiator concentrations was obtained in CTAB micelles and O/W microemulsion media. The polymerization of the oil‐soluble monomer styrene in different As/n‐butanol/20% styrene/water microemulsion media (W/O, BC, and O/W) was also investigated with different initiators: water‐soluble potassium persulfate and oil‐soluble azobisisobutyronitrile. A similar connection between the structures of the microemulsions and the conversions of styrene in CTAB/n‐butanol/10% n‐octane/water for the polymerization of acrylamide was observed again. The structures of the microemulsions had an important role in the molecular weights and sizes of polystyrene. The polystyrene particles were 10–20 nm in diameter in BC microemulsion media and 30–60 nm in diameter in O/W microemulsion media according to transmission electron microscopy. We determined the solubilization site of styrene in O/W microemulsion drops by 1H NMR spectra to analyze the results of the microemulsion polymerization of styrene. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3320–3334, 2001  相似文献   

10.
The systems investigated were water/sucrose laurate/ethoxylated mono-di-glyceride/oleic phase. The oleic phase used first was the pure oils R (+)-limonene, isopropylmyristate, and caprylic-capric triglyceride; these oils were then mixed with ethanol at different mixing ratios (w/w). The total area of the one phase microemulsion region is dependent on the mixing ratios (w/w) of the mixed surfactants and that of the ethanol/oil. The largest microemulsion phase area formed with a surfactants mixing ratio (w/w) equals unity. For the systems where the oleic phase was a mixture of oil and ethanol, the total area of the monophasic microemulsion increases with the increase in the ethanol/oil mixing ratio (w/w). The Gibbs free energy of solubilization was estimated. It increases as the mixing ratio (w/w) of ethoxylated mono-di-glyceride/sucrose laurate increases and with the increase in the ethanol/oil mixing ratio (w/w). The Gibbs free energy of solubilization decreases with the increase in the water content in the water-in-oil microemulsions. The values of the Gibbs free energy of solubilization are higher for oil-in-water microemulsions compared to those of the water-in-oil microemulsions.  相似文献   

11.
12.
Nanosized hydrogel particles prepared through inverse microemulsion polymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid, using the combination of an oil soluble emulsifier (SPAN80) with a water soluble emulsifier (TWEEN 80), and precise determination of HLB range related to the formation of stable single phase microemulsions.

The effect of crosslink density, water phase to oil phase ratio, and the hydrophilic-lipophilic balance (HLB) value on polymerization rate, particle size, and swelling ratio were investigated. It found that polymerization rate and particle size are strongly dependent on the water phase to oil phase ratio. Hydrogel samples prepared using oil soluble and water soluble initiators and the results showed that the initiator type had a great influence on monomer conversion and particle size. Effect of pH on equilibrium swelling of hydrogels was studied by dynamic light scattering and hydrogels showed pH-independent swelling behavior in a broad range of pH values. We also reported and discussed the crosslink density distribution in nanogels prepared by inverse microemulsion polymerization.  相似文献   

13.
The phase boundaries of the middle-phase microemulsion for NaCl/SDS/H2O/1-heptane/1-pentanol systems in the absence of polymer and in the presence of unmodified poly(acrylamide) (PAM) and hydrophobically modified poly(acrylamide) (HMPAM) have been determined at varying salt concentrations. These three middle-phase microemulsions (with HMPAM, with PAM, and without polymer) were studied using interfacial tension measurement, steady-state fluorescence, and time-resolved fluorescence quenching. Compared to the polymer-free system and the system with PAM, the addition of HMPAM significantly enlarges the range of the salt concentrations for the formation of the middle-phase microemulison and causes both the excess oil and aqueous phases to increase in volume at the expense of the middle-phase microemulsion. For the middle-phase microemulsion with HMPAM, the interfacial tensions of the microemulsion phase with the excess oil phase and with the excess aqueous phase are all ultralow and exhibit higher values than those with PAM and without polymer. At the same salt concentration, the apparent surfactant aggregation number in the middle-phase microemulsion with HMPAM has the smallest value among these three systems. All results indicate that the strong interaction of surfactant with hydrophobically modified polymer has a large effect on the formation and properties of the middle-phase microemulsion.  相似文献   

14.
Solubilization capacity and structural transformations in nonionic microemulsions characterized by a large continuous isotropic region forming dilutable self-assembled nanodroplets containing solubilized carbamazepine, were studied along dilution lines 73 and 82 (70 and 80 wt% surfactant and 30 and 20 wt% of oil phase, respectively). The preparations were based on pharma-grade ingredients, water, R-(+)-limonene, ethanol, propylene glycol, and Tween 60. Solubilization capacity (SC) of the drug was dependent on the microstructure of the microemulsion and on the surfactant-to-oil phase weight ratio. The SC in the concentrate (reversed micelles) was 15 times higher than its solubility in the oil. Transition of the W/O microemulsion to a bicontinuous phase and to O/W droplets were indentified by electrical conductivity, viscosity, SAXS, and SD-NMR measurements. Once the system is diluted to 90 wt% aqueous phase, the SC is 10 and 16-fold higher, along dilution lines 73 and 82, respectively, than in pure water. Being solubilized, carbamazepine serves as a cosurfactant therefore it affects the curvatures of the microstructures and consequently the boundaries of the structural regions and the transition points between the different phases. Dilutable microemulsions are promising new carbamazepine vehicles for oral intake.  相似文献   

15.
Efforts were made to prepare bicontinuous microemulsions with ten different oil phases involving aliphatic, linear, and aromatic hydrocarbons as oil phases, two co-surfactants (n-butanol and n-pentanol) and two surfactants: cationic (CTAB) and anionic (SDS). Different weight percentages were employed for the preparation of cationic and anionic surfactant based microemulsions as reported in the literature. Out of the 40 compositions (10 oil phasesx2 co-surfactantsx2 surfactants) thus selected only 28 systems showed stable bicontinuous microemulsion phase. This behavior is explained on the basis of the structures of various constituents present in the microemulsions. Viscosity variations of stable bicontinuous microemulsions are found to depend mainly on the nature of co-surfactant. Conductivity behavior on the other hand depends mainly on the weight percentage and composition of aqueous phase. The solubility of pyrene in the oil phase determines the excimer formation and fluorescence behavior in microemulsions. The electron transfer property of both the water-soluble and the oil-soluble redox systems does not depend on the oil phase and the co-surfactant. The significance and importance of characterizing well defined bicontinuous microemulsions is thus highlighted.  相似文献   

16.
In this work structural features of anionic microemulsions, containing the pharmaceutical biocompatible components soya phosphatidylcholine (SPC), eumulgin HRE 40 (EU) and sodium oleate (SO) as surfactant, cholesterol (CHO) as oil phase and aqueous buffer were studied. Microemulsions were formulated with and without the antitumor drug doxorubicin (DOX). The various microstructures characterized in the pseudo-ternary phase diagram were analyzed by polarized light microscopy, small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD) as well as by their ability to incorporate and release DOX. The experimental results demonstrated a correlation between the composition, the structural features and drug delivery. It was found that at higher cholesterol contents, the crystallization of CHO polymorph phases changed the mobility of DOX molecules. Droplets were formed with short-range spatial correlation from a microemulsion (ME) with a low surfactant:oil ratio. More ordered structures with lamellar arrangements formed by the increasing of the CHO proportions in the formulation may be due to CHO crystallization. The in vitro release of DOX showed that the presence of a high content of crystalline CHO prolongs the release of DOX from ME. The retention of DOX in the internal oil phase of the ME may modulate the drug release for a prolonged time. These results clearly demonstrate the potential of ME as a drug-delivery system.  相似文献   

17.
Microemulsions (ME) containing hexadecyltrimethylammonium bromide (HTAB)/ethanol as surfactant, isopropylmyristate (IM) or butylstearate (BS) as oil phase and aqueous buffer were studied. Pseudo-ternary phase diagrams of the investigated systems were obtained at constant surfactant/cosurfactant molar ratio (1:5) by titration in order to characterize the proportions between the components to obtain clear systems. Oil in water microemulsions were prepared in a wide range of phase volume (phi). UV-vis absorption spectra of naproxen at pH 5.5 showed that the solubility of Np increases significantly in the presence of O/W ME in high phase volumes. For both, IM and BS microemulsions, the dynamic light scattering experiments showed that the size of the oil droplets remains constant in low values of phi, increasing abruptly in high phi values. Phase solubility study revealed that for both IM and BS microemulsions, the drug incorporation followed a straight-line profile in all range of phi. The data could be analyzed through the phase-separation model and the association constants (K) calculated varied from 27 to 90 M(-1), depending on the pH and on the microemulsion oil phase.  相似文献   

18.
U-type microemulsions formulated with water, mixed nonionic surfactants, and peppermint oil were used to solubilize celecoxib. Microemulsion dilution and interfacial factors contributing to the celecoxib solubilization were evaluated. Celecoxib solubilization capacity decreases with the increase in the water content. Electrical conductivity, dynamic viscosity, and SAXS measurements reveal the structural transition occurring in the microemulsion region. It was found that below 0.25 aqueous phase volume fraction the water-in-oil microemulsions are present, the transition between the water-in-oil to bicontinuous and then to oil-in water microemulsions occur at 0.30 and 0.8 aqueous phase volume fraction, respectively. The results demonstrate that the solubilized drug affects the transition from bicontinuous to water-in-oil microemulsions. The solubilized drug increases the hydrodynamic radius of the oil-in-water microemulsion droplets measured by dynamic light scattering.  相似文献   

19.
The phase behavior and structure of sucrose ester/water/oil systems in the presence of long-chain cosurfactant (monolaurin) and small amounts of ionic surfactants was investigated by phase study and small angle X-ray scattering. In a water/sucrose ester/monolaurin/decane system at 27 degrees C, instead of a three-phase microemulsion, lamellar liquid crystals are formed in the dilute region. Unlike other systems in the presence of alcohol as cosurfactant, the HLB composition does not change with dilution, since monolaurin adsorbs almost completely in the interface. The addition of small amounts of ionic surfactant, regardless of the counterion, increases the solubilization of water in W/O microemulsions. The solubilization on oil in O/W microemulsions is not much affected, but structuring is induced and a viscous isotropic phase is formed. At high ionic surfactant concentrations, the single-phase microemulsion disappears and liquid crystals are favored.  相似文献   

20.
以非离子型表面活性剂AEO~9、正十六烷、正己醇和水所组成的微乳液为对象, 研究盐和pH值对其粘度和流变性的影响, 得出它们在pH值为7时最小, 以及二价盐影响最大的结论, 正好与离子型微乳液结果相反, 为此进行了讨论。并从热效应和电导对其微观结构作了初步探索。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号