首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we present linear analysis of electrostatic counter-streaming instability in spin-polarized electron–positron–ion (e-p-i) plasma. With the aid of the separate spin evolution-quantum hydrodynamic (SSE-QHD) model, we derive the dispersion relation of counter-streaming instability. We numerically solve the dispersion and find four wave solutions: Langmuir wave, positron acoustic mode, and two electron and positron spin-dependent waves. It is noted that coupling of streaming and spin effects excites Langmuir instability and positron acoustic mode instability. However, in the absence of spin effect, only Langmuir instability will survive in e-p-i plasma. We have also discussed the effects of positron concentration, streaming speed, and spin polarization on the real frequency of waves and the growth rate. The present study may be helpful for understanding longitudinal wave propagation and instabilities in dense magnetized environments.  相似文献   

2.
Based on the quantum Magnetohydrodynamic (QMHD) model, the obliquely propagation of electrostatic waves in degenerate magnetized quantum plasmas with electron exchange-correlation effects are theoretically investigated. The modified linear dispersion relations of electrostatic waves are obtained and discussed in some specific cases. The analytical results clearly show that the dispersion properties of the high frequency electron waves (including the Langmuir wave and upper-hybrid wave) and the low frequency ion acoustic wave are modified by the quantum effects together with the electron exchange-correlation effects. The numerical results depict that the Langmuir wave and upper-hybrid wave can be unstable in the presence of the electron exchange-correlation effects, and it is also evidently indicated that the electron exchange-correlation effects can reduce the phase velocity of the waves, especially in the high wave number region. The corresponding results should be of relevance for identifying electrostatic fluctuations which transport in an inhomogeneous and magnetized quantum plasmas.  相似文献   

3.
Lower hybrid (LH) wave instability excited due to an electron beam in a spin‐polarized degenerate plasma is studied. Using the Separate Spin Evolution quantum hydrodynamic model, incorporating Coulomb exchange interaction and Bohm potential, the general dispersion relation of nearly perpendicular propagating electrostatic waves is derived. Furthermore, in the low‐frequency limit, the dispersion of LH wave is obtained. It is found that the electron spin polarization and beam streaming speed reduce the growth rate as well as the k‐domain. However, the beam density and the propagation angle enhance both the growth rate and k‐domain of LH instability. In addition, the contribution of the Bohm potential term increases the intensity of the growth rate. All these effects may have a strong bearing on the wave and instability phenomena in spin‐polarized plasmas.  相似文献   

4.
《Physics letters. A》2019,383(24):2903-2907
In degenerate quantum plasma the energy behavior of electrostatic modes propagating perpendicular to the external magnetic field is studied by employing the separated spin evolution quantum hydrodynamic (SSE-QHD) model. This model reveals that spin electron cyclotron wave (SECW) appears additionally with the upper hybrid wave (UHW). In case of SECW, the curves for the energy flow speed at different levels of spin polarization effect flip over at a particular value of wave number. The spin polarization effect enhances the energy flow speed before this value of wave number and then suppresses it afterward. The energy flow speed is enhanced by spin polarization effect in the entire range of wave number for the propagation of UHW. The Bohm potential effect drastically increases the energy flow speed at high wave number domain in both the waves. This study may find its applications to understand the energy behavior inspin polarized solid state plasmas  相似文献   

5.
The separate spin evolution quantum hydrodynamics(SSE-QHD) model is used to investigate the energy behavior for ion acoustic waves in degenerate quantum plasma. Numerical results show that the energy flow speed decreases with spin polarization parameter. It is also shown that it decreases with the increasing rate up to a certain range of wave number and then it goes to zero asymtotically. It is observed that Bohm potential suppresses the energy flow speed. It is also noticed that the energy flow speed deviates from the group velocity even in the absence of Bohm potential effect. However, the contribution of of Bohm poential effect in spin polarized plasma reduces the extent of deviation.  相似文献   

6.
By employing the reductive perturbation technique, the propagation of cylindrical and spherical ion acoustic solitary waves is studied in an unmagnetized dense relativistic plasma, consisting of relativistically degenerate electrons and cold fluid ions. A modified Korteweg-de-Vries equation is derived and its numerical solutions have been analyzed to identify the basic features of electrostatic solitary structures that may form in such a degenerate Fermi plasma. Different degrees of relativistic electron degeneracy are discussed and compared. It is found that increasing number density leads to decrease the amplitude the width of the ion acoustic solitary wave in both the cylindrical and spherical geometries. The relevance of the work to the compact astrophysical objects, particularly white dwarfs is pointed out.  相似文献   

7.
A set of nonlinear equations which can self‐consistently describe the behavior of high frequency Electromagnetic (EM) waves in un‐magnetized, ultra‐relativistic electron‐positron (e‐p) plasmas is obtained on the basis of Vlasov‐Maxwell equations. Nonlinear wave‐wave, wave‐particle interactions lead to the coupling of high frequency EM waves with low frequency density perturbations which result from EM waves radiation pressure. The same as that in conventional electron‐ion (e‐i) plasmas, strong EM waves in e‐p plasmas will give rise to density depletion in which itself are trapped. But on the contrary to that in e‐i plasmas, there no longer exists electrostatic acoustic–like wave in e‐p plasmas due to the absence of mass difference. For linear polarized EM waves, a stationary EM soliton with a spiky structure will be formed. The possible relation of the localized field to pulsar radio pulse is discussed (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
A quantum analysis based on the Dirac equation of the propagation of spinor-electron waves in coupled quantum wells, or equivalently coupled electron waveguides, is presented. The complete optical wave equations for Spin-Up (SU) and Spin-Down (SD) spinor-electron waves in these electron guides couplers are derived from the Dirac equation. The relativistic amplitudes and dispersion equations of the spinor-electron wave-guided modes in a planar quantum coupler formed by two coupled quantum wells, or equivalently by two coupled slab electron waveguides, are exactly derived. The main outcomes related to the spinor modal structure, such as the breaking of the non-relativistic degenerate spin states, the appearance of phase shifts associated with the spin polarization and so on, are shown.  相似文献   

9.
The propagation of light waves in an underdense plasma is studied using one-dimensional Vlasov-Maxwell numerical simulation.It is found that the light waves can be scattered by electron plasma waves as well as other heavily and weakly damping electron wave modes,corresponding to stimulated Raman and Brilluoin-like scatterings.The stimulated electron acoustic wave scattering is also observed as a high scattering level.High frequency plasma wave scattering is also observed.These electron electrostatic wave modes are due to a non-thermal electron distribution produced by the wave-particle interactions.The collision effects on stimulated electron acoustic wave and the laser intensity effects on the scattering spectra are also investigated.  相似文献   

10.
The theory of propagation of electrostatic energy through an infinite, homogeneous electron–ion quantum plasma is presented. Simple expressions for the energy flow, energy density, and energy velocity of longitudinal oscillation waves in the system are derived using the linearized quantum hydrodynamic theory for the electron fluid, which incorporates the important quantum statistical pressure and electron diffraction force, while the optical response of the ion particles is characterized by the classical frequency‐dependent dielectric function, ?ion. Both cases of plasmon (high‐frequency) and quantum ion‐acoustic (low‐frequency) waves are considered.  相似文献   

11.
The oblique propagation of the quantum electrostatic solitary waves in magnetized relativistic quantum plasma is investigated using the quantum hydrodynamic equations. The plasma consists of dynamic relativistic degenerate electrons and positrons and a weakly relativistic ion beam. The Zakharov‐Kuznetsov equation is derived using the standard reductive perturbation technique that admits an obliquely propagating soliton solution. It is found that two types of quantum acoustic modes, that is, a slow acoustic mode and fast acoustic mode, could be propagated in our plasma model. The parameter that determines the nature of soliton, that is, compressive or rarefactive soliton, for slow mode is investigated. Our numerical results show that for the slow mode, the determining parameter is ion beam velocity in the case of relativistic degenerate electrons. We also have examined the effects of plasma parameters (like the beam velocity, the density ratio of positron to electron, the relativistic factor, and the propagation angle) on the characteristics of solitary waves.  相似文献   

12.
章扬忠  谢涛 《物理学报》2014,63(3):35202-035202
本文所论述的轴对称环状静电模是指环形磁约束等离子体(如托卡马克)中环向模数为零的近理想静电流体模,它包含有测地声模和基频率与之较低的声模;也含有所谓的‘近零频带状流’.本文根据冷离子流体模型在圆形磁面构成的准环坐标系中的表示,对涉及以上三种模式的漂移波湍流参量激发理论,在一级环形效应近似下,进行了系统讨论,并证明了带状流的四个新命题.利用对漂移波能谱的参数化描写,注意到由漂移波能谱径向有限宽度所引发的特性,如波能传播量的双Landau奇点,揭示了有限宽度对径向δ谱所得结果的重要修正:如,对近零频带状流和测地声模的参量激发条件带来的严格限制.此外,还讨论了密度带状流在高q条件下被激发的可能性.本文选用合理的物理参数.采用图示方法详细地讨论了有关的数值结果.分析表明,测地声模和近零频带状流的参量激发不可能发生在同一小半径处;如果测地声模被参量激发,也应能观察到密度带状流.  相似文献   

13.
By using the quantum magnetohydrodynamic model, the electrostatic waves in weakly magnetized quantum plasmas are investigated. The electrons are treated as a quantum and magnetized species, while the ions are classical unmagnetized ones. The general dispersion relations are derived. It is shown that, both the high frequency electron waves (Langmuire wave and upper-hybrid wave) and the low frequency ion acoustic wave can propagate when the plasmas are cold.  相似文献   

14.
Q. Haque  S. Ali Shan 《Physics letters. A》2018,382(38):2744-2748
The impact of electron exchange-correlation term on the linear and nonlinear quantum ion (QIA) acoustic drift waves in a highly degenerate plasma is investigated. An analytical approach is employed to derive the differential equation which is later on turned into Sagdeev energy integral equation that can be utilized to get drift solitons under existence conditions. It is noted that phase speed/frequency of the linear drift quantum ion acoustic (QIA) waves increases with electron exchange-correlation effect, but the amplitude of the corresponding solitons decreases with inclusion of these effects. Present study is carried out with reference to highly dense plasma environments like fast ignition inertial confinement fusion and white dwarfs etc.  相似文献   

15.
Very low frequency (50 to 500 Hz) self-excited electrostatic waves are detected in a cylindrical argon plasma column with a weak axial magnetic field (10 to 100 G). The waves propagate azimuthally with a phase velocity in the electron diamagnetic drift direction, but with a speed at least an order of magnitude less than the ion acoustic speed. A number of known plasma instabilities are considered as possible explanations, though most of them do not seem to account for the observed characteristics of the waves.  相似文献   

16.
Three kinds of electrostatic modes are experimentally observed to propagate along magnetic-field lines for the first time in the pair-ion plasma consisting of only positive and negative fullerene ions with an equal mass. It is found that the phase lag between the density fluctuations of positive and negative ions varies from 0 to pi depending on the frequency for ion acoustic wave and is fixed at pi for an ion plasma wave. In addition, a new mode with the phase lag about pi appears in an intermediate-frequency band between the frequency ranges of the acoustic and plasma waves.  相似文献   

17.
Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave.  相似文献   

18.
An instability of a magnetized plasma column in the frequency range has been identified as an ion acoustic one. The waves are azimuthally driven by the electron diamagnetic velocity due to the radial gradient of a fast electron tail. The strongest peaks in the frequency spectrum correspond to m = 6 or 8 wave lengths on one turn. This selection can be explained as an optimum value between increasing growth rate and the resonance disturbing phase mismatch at higher mode numbers.  相似文献   

19.
《Physics letters. A》2006,349(6):500-504
The electron–positron pair annihilation effects on the dust ion acoustic surface wave are investigated in semi-bounded magnetized electron–positron–ion–dust plasmas. The dispersion relation of the low frequency dust ion acoustic surface wave is obtained by the plasma dielectric function with the specular reflection boundary condition. The results show that the frequency of the dust ion acoustic surface wave is found to be increased with increasing the annihilation of the electron–positron pair. In addition, the group velocity of the dust ion acoustic surface wave is also found to be increased with the annihilation of the electron–positron pair.  相似文献   

20.
The propagation characteristics of high-frequency surface waves are studied in spin-1/2 quantum plasmas by considering the electron relativistic degenerate and exchange-correlation effects. Using the quantum fluid equations of magnetoplasmas in the presence of the quantum Bohm potential, spin magnetization energy, relativistic degenerate pressure, and exchange-correlation effects, a generalized dispersion relation is derived. The analytical and numerical results show that the relativistic degenerate and exchange-correlation effects significantly modify the propagation properties of high-frequency surface waves. It is found that under the influence of exchange-correlation effects, the frequency spectrum of high-frequency surface waves will be down-shifted. It is also indicated that the dispersion curve shifts up with the increase of relativistic gamma factor. Furthermore, the phase speed of the high-frequency surface waves increases with increasing electron number density. The current research is helpful to understand the propagation of the high-frequency surface waves in quantum plasmas, such as those in dense astrophysical environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号