首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This paper addresses the issue of collegiate mathematics achievement of underrepresented minority students as it investigates the impact of a cooperative learning calculus programme on the first-year calculus experience of non-Asian ethnic minority engineering students. The Emerging Ethnic Engineers Programme in the College of Engineering at the University of Cincinnati is a successful, comprehensive programme that focuses on the recruitment, retention, academic success, professional development, and timely graduation of underrepresented coloured students. The objectives of the programme are accomplished through three interrelated phases: pre-college science and mathematics programmes, first-year collegiate programmes, and upper-division programmes. The underlying principles of the first-year programme include academic achievement and establishing a strong sense of community among the cohort. This report will focus on the cooperative learning calculus programme that has been successful in improving retention and academic success rates for coloured freshmen engineering students.  相似文献   

3.
This article describes a mathematics support programme at the University of Queensland, targeted at first-year engineering students identified as having a high risk of failing a first-year mathematics course in calculus and linear algebra. It describes how students were identified for the programme and the main features of the programme. The success of the programme was evaluated using student feedback as well as a comparison of the performance of students who participated in the support programme with those of a similar background who briefly attended or did not attend the programme. The pass rate in the supported group of regular attendees was 79% compared with 43% and 46% in the briefly supported and unsupported groups, respectively. Both student feedback and statistical data indicate that the programme was highly successful in improving the performance of those who regularly engaged with it.  相似文献   

4.
Many approaches to make mathematics relevant to first-year engineering students have been described. These include teaching practical engineering applications, or a close collaboration between engineering and mathematics teaching staff on unit design and teaching. In this paper, we report on a novel approach where we gave higher year engineering and multimedia students the task to ‘make maths relevant’ for first-year students. This approach is novel as we moved away from the traditional thinking that staff should produce these resources to students producing the same. These students have more recently undertaken first-year mathematical study themselves and can also provide a more mature student perspective to the task than first-year students. Two final-year engineering students and three final-year multimedia students worked on this project over the Australian summer term and produced two animated videos showing where concepts taught in first-year mathematics are applied by professional engineers. It is this student perspective on how to make mathematics relevant to first-year students that we investigate in this paper. We analyse interviews with higher year students as well as focus groups with first-year students who had been shown the videos in class, with a focus on answering the following three research questions: (1) How would students demonstrate the relevance of mathematics in engineering? (2) What are first-year students' views on the resources produced for them? (3) Who should produce resources to demonstrate the relevance of mathematics? There seemed to be some disagreement between first- and final-year students as to how the importance of mathematics should be demonstrated in a video. We therefore argue that it should ideally be a collaboration between higher year students and first-year students, with advice from lecturers, to produce such resources.  相似文献   

5.
Contemporary science educators must equip their students with the knowledge and practical know-how to connect multiple disciplines like mathematics, computing and the natural sciences to gain a richer and deeper understanding of a scientific problem. However, many biology and earth science students are prejudiced against mathematics due to negative emotions like high mathematical anxiety and low mathematical confidence. Here, we present a theoretical framework that investigates linkages between student engagement, mathematical anxiety, mathematical confidence, student achievement and subject mastery. We implement this framework in a large, first-year interdisciplinary science subject and monitor its impact over several years from 2010 to 2015. The implementation of the framework coincided with an easing of anxiety and enhanced confidence, as well as higher student satisfaction, retention and achievement. The framework offers interdisciplinary science educators greater flexibility and confidence in their approach to designing and delivering subjects that rely on mathematical concepts and practices.  相似文献   

6.
John Berry 《ZDM》2002,34(5):212-220
Mathematical modelling as one component of problem solving is an important part of the mathematics curriculum and problem solving skills are often the most quoted generic skills that should be developed as an outcome of a programme of mathematics in school, college and university. Often there is a tension between mathematics seen at all levels as ‘a body of knowledge’ to be delivered at all costs and mathematics seen as a set of critical thinking and questioning skills. In this era of powerful software on hand-held and computer technologies there is an opportunity to review the procedures and rules that form the ‘body of knowledge’ that have been the central focus of the mathematics curriculum for over one hundred years. With technology we can spend less time on the traditional skills and create time for problem solving skills. We propose that mathematics software in general and CAS in particular provides opportunities for students to focus on the formulation and interpretation phases of the mathematical modelling process. Exploring the effect of parameters in a mathematical model is an important skill in mathematics and students often have difficulties in identifying the different role of variables and parameters This is an important part of validating a mathematical model formulated to describe, a real world situation. We illustrate how learning these skills can be enhanced by presenting and analysing the solution of two optimisation problems.  相似文献   

7.
As students progress through the college mathematics curriculum, enter graduate school and eventually become practicing mathematicians, reading mathematics textbooks and journal articles appears to become easier and leads to increased proficiency and understanding. This study was designed to begin to understand how mathematically more advanced readers read for understanding in mathematical exposition as it appears in textbooks compared to first-year undergraduate students. Three faculty members and three graduate students participated in this study and read from a first-year graduate textbook in an area of mathematics unfamiliar to each of them. The observed reading strategies of these more mathematically advanced readers are compared to observed reading strategies of first-year undergraduate students from an earlier study. The reading methods of the faculty level mathematicians were all quite similar and were markedly different from those that have been identified for undergraduate students, as well as from those used by the graduate students in this study. A Mathematics Reading Framework is proposed based on this study and previous research documenting the strategies that first-year undergraduate students use for reading exposition in their mathematics textbooks.  相似文献   

8.
9.
Deficiencies in beginning undergraduate students’ basic mathematical skills has been an issue of concern in higher education, particularly in the past 15 years. This issue has been tracked and analysed in a number of universities in Ireland and internationally through student scores recorded in mathematics diagnostic tests. Students beginning their science-based and technology-based undergraduate courses in the University of Limerick have had their basic mathematics skills tested without any prior warning through a 40 question diagnostic test during their initial service mathematics lecture since 1998. Data gathered through this diagnostic test have been recorded in a database kept at the university and explored to track trends in mathematical competency of these beginning undergraduates. This paper details findings surrounding an analysis of the database between 2003 and 2013, outlining changes in mathematical competencies of these beginning undergraduates in an attempt to determine reasons for such changes. The analysis found that the proportion of students tested through this diagnostic test that are predicted to be at risk of failing their service mathematics end-of-semester examinations has increased significantly between 2003 and 2013. Furthermore, when students' performance in secondary level mathematics was controlled, it was determined that the performance of beginning undergraduates in 2013 was statistically significantly below that of the performance of the beginning undergraduates recorded 10 years previously.  相似文献   

10.
Of the four subjects in an integrated science, technology, engineering, and mathematics (STEM) approach, mathematics has not received enough focus. This could be in part because mathematics teachers may be apprehensive or unsure about how to implement integrated STEM education in their classrooms. There are benefits to integrated STEM in a mathematics classroom though, including increased motivation, interest, and achievement for students. This article discusses three methods that middle school mathematics teachers can utilize to integrate STEM subjects. By focusing on open‐ended problems through engineering design challenges, mathematical modeling, and mathematics integrated with technology middle school students are more likely to see mathematics as relevant and valuable. Important considerations are discussed as well as recent research with these approaches.  相似文献   

11.
Reports such as Bio2010 emphasize the importance of integrating mathematical modelling skills into undergraduate biology and life science programmes, to ensure students have the skills and knowledge needed for biological research in the twenty-first century. One way to do this is by developing a dedicated mathematics subject to teach modelling and mathematical concepts in biological contexts. We describe such a subject at a research-intensive Australian university, and discuss the considerations informing its design. We also present an investigation into the effect of mathematical and biological background, prior mathematical achievement, and gender, on student achievement in the subject. The investigation shows that several factors known to predict performance in standard calculus subjects apply also to specialized discipline-specific mathematics subjects, and give some insight into the relative importance of mathematical versus biological background for a biology-focused mathematics subject.  相似文献   

12.
This study investigates the pedagogical skills and knowledge of three tertiary-level mathematics support tutors in a large group classroom setting. This is achieved through the use of video analysis and a theoretical framework comprising Rowland's Knowledge Quartet and general pedagogical knowledge. The study reports on the findings in relation to these tutors’ provision of mathematics support to first and second year undergraduate engineering students and second year undergraduate science students. It was found that tutors are lacking in various pedagogical skills which are needed for high-quality learning amongst service mathematics students (e.g. engineering/science/technology students), a demographic which have low levels of mathematics upon entering university. Tutors teach their support classes in a very fast didactic way with minimal opportunities for students to ask questions or to attempt problems. It was also found that this teaching method is even more so exaggerated in mandatory departmental mathematics tutorials that students take as part of their mathematics studies at tertiary level. The implications of the findings on mathematics tutor training at tertiary level are also discussed.  相似文献   

13.
The science of biology has been transforming dramatically and so the need for a stronger mathematical background for biology students has increased. Biological students reaching the senior or post-graduate level often come to realize that their mathematical background is insufficient. Similarly, students in a mathematics programme, interested in biological phenomena, find it difficult to master the complex systems encountered in biology. In short, the biologists do not have enough mathematics and the mathematicians are not being taught enough biology. The need for interdisciplinary curricula that includes disciplines such as biology, physical science, and mathematics is widely recognized, but has not been widely implemented. In this paper, it is suggested that students develop a skill set of ecology, mathematics and technology to encourage working across disciplinary boundaries. To illustrate such a skill set, a predator–prey model that contains self-limiting factors for both predator and prey is suggested. The general idea of dynamics, is introduced and students are encouraged to discover the applicability of this approach to more complex biological systems. The level of mathematics and technology required is not advanced; therefore, it is ideal for inclusion in a senior-level or introductory graduate-level course for students interested in mathematical biology.  相似文献   

14.
Many universities issue mathematical diagnostic tests to incoming first-year students, covering a range of the basic concepts with which they should be comfortable from secondary school. As far as many lecturers are concerned, the purpose of this test is to determine the students' mathematical knowledge on entry. It should also provide an early indication of which students are likely to need additional help, and hopefully encourage such students to avail of extra support mechanisms at an early stage. However, it is not clear that students recognize these intentions and there is a fear that students who score poorly in the test will have their confidence further damaged in relation to mathematics and will be reluctant to seek help. To this end, a questionnaire was developed to explore students’ perspectives on diagnostic testing. Analysis of responses received to the questionnaire provided an interesting insight into students’ perspectives including the optimum time to conduct such a test, their views on the aims of diagnostic testing, whether they feel that testing is a good idea, and their attitudes to the support systems put in place to help those who scored poorly in the test.  相似文献   

15.
This paper considers a second-year Mathematical Aspects in Architectural Design course, which relies on a first-year mathematics course and offers mathematical learning as part of hands-on practice in architecture design studio. The 16-hour course consisted of seminar presentations of mathematics concepts, their application to covering the plane by regular shapes (tessellations), and an architecture design project. The course follow-up examined the features of mathematical learning in the studio environment using qualitative methods. It showed students’ curiosity and motivation to deepen in mathematical subjects and use them in their tessellation design projects. The majority of the students refreshed and practically applied their background mathematical knowledge, especially in calculus, on a need-to-know basis.  相似文献   

16.
ABSTRACT

This article is a follow-up to an earlier paper on the mathematics support learning tutorial programme (SLT), an intervention programme at The University of Queensland that targets students considered to be at risk of failing Calculus and Linear Algebra I, the first tertiary level mathematics subject at The University of Queensland. The first paper (Hillock, P., Jennings, M., Roberts, A., & Scharaschkin, V. (2013). Amathematics support programme for first-year engineering students. International Journal of Mathematical Education in Science and Technology, 44(7), 1030–1044) reported on the inaugural programme implemented in 2012. This article provides an update of the progress of the SLT since 2012. We provide statistics for the subsequent 12 semesters to Semester 2, 2018 and describe the evolution of the SLT since its implementation. Statistical analysis of the additional data and student feedback indicate that the SLT continues to have a positive impact on student learning, with weak students making significant gains from attending the programme.  相似文献   

17.
Lowering the dropout rate of incoming mathematics and science students, and enhancing the provision of mathematics support for freshmen are two important aims of the University of Amsterdam. The approach recently adopted to support first year students is to set up a diagnostic pretest and posttest and use these tests to identify students being at risk of failing their mathematics courses and other modules in the first year. Follow-up procedures are implemented and computer algebra based assessment and practise of mathematics skills play an important role in it. In this paper we describe this approach and its success.  相似文献   

18.
The National Council of Teachers of Mathematics has set ambitious goals for the teaching and learning of mathematics that include preparing students for both the workplace and higher education. While this suggests that it is important for students to develop strong mathematical competencies by the end of high school, there is evidence to indicate that overall this is not the case. Both national and international studies corroborate the concern that, on the whole, US 12th grade students do not demonstrate mathematical proficiency, suggesting that students making the transition from high school to college mathematics may not be ready for its rigors. In order to investigate mathematical readiness of entering college students, this study surveyed mathematics faculty. Specifically, faculty members were asked their perceptions of average entering students' readiness related to relevant mathematical skills and concepts, and the importance of the same skills and concepts as foundations for college mathematics. Results demonstrated that the faculty perceived that average freshman students are generally not mathematically prepared; further, the skills and concepts rated as highly important — namely, algebraic skills and reasoning and generalization — were among those rated the lowest in terms of student competencies.  相似文献   

19.
20.
First-year engineering students often struggle to see the relevance of theoretical mathematical concepts for their future studies and professional careers. This is an issue, as students who do not see relevance in fundamental parts of their studies may disengage from these parts and focus their efforts on other subjects they think will be more useful to them. In this study, we surveyed engineering students enrolled in a first-year mathematics subject on their perceptions of the relevance of the individual mathematical topics taught. Surveys were administered at the start of semester when some of these topics were unknown to them, and again at the end of semester when students had not only studied all these topics but also watched a set of animated videos. These videos had been produced by higher-year students to explain where they had seen applications of the mathematical concepts presented in the first year. We notice differences between the perceived relevance of topics for future study and for professional careers, with relevance to study rated higher than relevance to careers. We also find that the animations are seen as helpful in understanding the relevance of first-year mathematics. The majority of students indicated that lecturers with students as partners should work collaboratively to produce future videos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号