首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A new series of 14–16 membered tetraazatetraimine macrocyclic complexes [ML1X2]-[ML3X2] [M=CoII, NiII and ZnII] and [CuL1]X2-[CuL3]X2 [X=Cl or NO3] have been synthesized by the template condensation of dibenzoylmethane with primary diamines in MeOH. The complexes were characterized by elemental analysis, i.r, 1H-n.m.r., e.p.r. and u.v-vis spectroscopy, as well as by conductivity and magnetic susceptibility measurements. The copper complexes exhibit square planar geometry, whereas an octahedral geometry is suggested for all other complexes.  相似文献   

2.
New copper(II) complexes of indoxyl thiosemicarbazone (ITSC) of general composition CuL2X2 (where L: ITSC; X: Cl-, NO3-, ClO4-, NCS-) have been synthesized and characterized by elemental analysis, molar conductance, magnetic susceptibility measurements and spectral (electronic, IR, EPR, 1H NMR, Mass) studies. Cyclic voltammetry measurements show quasi-reversible Cu2+/Cu1+ couple. Various physico-chemical techniques suggest a tetragonal structure for these copper(II) complexes.  相似文献   

3.
Two new one-dimension copper(II) coordination polymers [CuL(2)(NCS)(2)](n) (1) and [CuL(2)(NO(3))(2)](n) (2) (L=(C(5)H(4)N)C(CH(3))=N-N=(CH(3))C(C(5)H(4)N)) have been synthesized and characterized by IR, elemental analysis, TG technique and X-ray crystallography. Each Cu(II) atom has a distorted octahedral N(6) (1) or N(4)O(2) (2) environment with four pyridyl N atoms from four ligands and two N atoms from two NCS(-) anions for polymer 1 or two O atoms from two NO(3)(-) anions for polymer 2, respectively. A pair of bis-monodentate bridging ligands links two Cu(II) centers to form one dimension chain structure containing bimetallic 22-membered macrometallacyclic rings. 1D chain is held together with its neighboring ones via C-H?S hydrogen bonds for 1 and C-H?O hydrogen bonds, C-H?π interactions for 2 to form a 3D supramolecular structure, respectively. The luminescent properties of the polymers 1 and 2 were investigated in the solid state at room temperature.  相似文献   

4.
The novel binucleating ligand, 6,6 prime-methylene-bis(5 prime-amino-3 prime,4 prime-benzo-2 prime-thiapentyl)-1,11-diamino-2,3:9,10-dibenzo-4,8-dithiaundecane (H4L) was prepared and reacted with copper(II) salts in dry MeOH to yield mixtures of copper(I) and copper(II) complexes with Cl- and ClO-4 counter ions. The amine functions on the ligand release protons to form copper(I) complexes: (Cu2L)X2, where X=Cl−, ClO4-. The complexes were oxidized to (Cu2L)X4 with H2O2 in DMF; Cu(NO3)2 gave a different complex, [Cu2(H4L)(NO3)2](NO3)2, as regards proton releasing ability, coordination and oxidation number. Evidence for the structures of this new tetraamino-tetrathioether ligand and its copper complexes is provided by 1H-, 13C-n.m.r., mass, u.v.–vis., i.r. spectra, elemental analyses, molar conductivities and magnetic moments. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
An electrosprayed water/methanol solution of guanosine and Cu(NO3)2 was observed to give rise to gas-phase copper complexed ions of [CuLn]*2+, [CuL(MeOH)n]*2+, and [CuG n(NO3)]*+, as well as the ions [L]*+, [L+H]+, [G]*+, and [G+H]+ (L=guanosine, G=guanine). The Collision-Induced Dissociation (CID) of [CuL3]*2+ and [CuL(MeOH)n]*2+ (n=2, 3) generates guanosine radical cations [L]*+, while dimeric guanosine radical cations [L2]*+ are generated in the dissociation of [CuL4]*2+. Protonated guanosine [L+H]+ is one of the main products in the primary dissociation of [CuL2]*2+, while the dissociation of the higher-order [CuG2]*2+ produces the [G]*+ radical cation. The guanosine dimer radical cation, [L2]*+ presumably arises from the interaction of two guanosine molecules via proton and hydrogen bonding and is observed to dissociate into [L+H]+ and [L-H]* at low energies. We propose that the first two ligands bind strongly with Cu(II) through N7 and O6 to form a [CuL2]*2+ complex with a four-coordinated planar structure and that a third ligand binds loosely with copper to form [CuL3]*2+. Additional ligation observed in the formation of [CuLn]*2+ (n相似文献   

6.
A series of copper(II) complexes (CuL2x) with new N-di-methylphenyl-3,5-Bu2t-salicylaldimines (L(x)H) were prepared and characterized by IR, UV/vis, 1H NMR, ESR, cyclic voltammetry techniques and chemical oxidation. L(x)H ligands have been found selectively bind to a Cu(II), rather than to Ni(II), Co(II), Mn(II), VO(IV), Zn(II) and Cd(II). ESR examinations of the CuL2x complexes demonstrate that they exist in magnetically diluted mononuclear or coupled triplet-state structures in the solid. The temperature dependent (113-283 K) intensity of the powder ESR spectra for some CuL2x is characteristic of ferromagnetic coupling (J > 0). The reduction potentials of CuL2x in DMSO are sensitive to aniline moieties. Chemical oxidation of CuL2x with (NH4)2[Ce(NO3)6] in CHCl3 and MeCN solutions at 300 K affords gradually disappearance of their ESR signals and dramatic changes in the electronic spectra as well as the appearance of new maximum bands at 530-672 (CHCl3) and 670-700 nm (MeCN), suggesting generation of Cu(II)-phenoxyl radical species.  相似文献   

7.
A tetra-nuclear, star-shaped hetero-metallic copper(II)-manganese(II) complex, [{CuL(H(2)O)}(2)(CuL)Mn](ClO(4))(2) (1) has been synthesized by reacting the "complex as ligand" [CuL] with Mn(ClO(4))(2) where H(2)L is the tetradentate di-Schiff base derived from 1,3-propanediamine and 2-hydroxyacetophenone. Upon treatment with the polyatomic anions azide, cyanate, or thiocyanate in methanol medium, complex 1 transforms into the corresponding trinuclear species [(CuL)(2)Mn(N(3))(2)] (2), [(CuL)(2)Mn(NCO)(2)] (3) and [(CuL)(2)Mn(NCS)(2)] (4). All four complexes have been structurally and magnetically characterized. In complex 1 the central Mn(II) ion is encapsulated by three terminal [CuL] units through the formation of double phenoxido bridges between Mn(II) and each Cu(II). In complexes 2-4 one of the CuL units is replaced by a couple of terminal azide, N-bonded cyanate or N-bonded thiocyanate ions respectively and the central Mn(II) ion is connected to two terminal Cu(II) ions through a double asymmetric phenoxido bridge. Variable temperature magnetic susceptibility measurements show the presence of moderate ferrimagnetic exchange interactions in all the cases mediated through the double phenoxido bridges with J values (H = -JS(i)S(i + 1)) of -41.2, -39.8 and -12.6 cm(-1) (or -40.5 and -12.7 cm(-1) if we use a model with two different exchange coupling constants) for the tetranuclear MnCu(3) cluster in compound 1 and -20.0, -17.3 and -32.5 cm(-1) for the symmetric trinuclear MnCu(2) compounds 2-4. These ferrimagnetic interactions lead to spin ground states of 1 (5/2 - 3*1/2) for compound 1 and 3/2 (5/2 - 2*1/2) for compounds 2-4.  相似文献   

8.
Transition metal complexes of CoII, NiII and CuII with 4-(4-azidosulfophenylazo)-5-phenyl-3,4-dihydro-2H-pyrazol-3-oneHL1, 4-(4-azidosulfophenylazo)-5-methyl-2-phenyl-3,4-dihydro-2H-pyrazol-3-one HL2 and 4-(3-azidosulfo-6-methoxyphenylazo)-5-methyl-2-phenyl-3,4-dihydro-2H-pyrazol-3-one HL3 were prepared and characterized by elemental analyses, molar conductances and magnetic susceptibilities and by i.r., electronic and e.s.r. spectral measurements as well as thermal (d.t.a and t.g.a.) analysis. The i.r. spectra indicate that HL acts as a bidentate ligand coordinating via the azo and enolic-oxygen linkages. The electronic spectral data and magnetic moments suggest a tetragonally distorted octahedral geometry for the complexes having the formula ML2·2H2O, (M = CoII, NiII and CuII), square pyramidal geometry for CuL 2 3 H2O and tetrahedral geometry for CoL 2 3 . The X-band e.s.r. spectra of the copper(II) complexes reveal anaxial symmetry for both CuL 2 2 2H2O and CuL 2 3 H2O while CuL 2 1 O is isotropic in the solid state at room temperature. The d.t.a. curves show two exothermic peaks for all three complexes CoL 2 3 ,NiL 2 3 2H2O and CuL 2 3 H2O and one endothermic peak for the latter two aqua complexes.  相似文献   

9.
Novel seven-coordinate complexes formulated as [CuL(BH4)2], [CuL(BH4)(NO2)] and [CuL(NO2)2] (L = 1,4,7-triazacyclononane) have been prepared and structurally characterized by elemental analyses, spectroscopic data (u.v., i.r. and e.p.r.), magnetic susceptibility and conductivity measurements. The results reveal that the complexes are non-electrolytic. The coordination geometry around the copper(II) ion is a seven coordinated square pyramidal structure with three nitrogen atoms of the 1,4,7-triazacyclononane and either four hydrogen atoms of two bidentate tetrahydroborate groups or two hydrogen atoms of the bidentate tetrahydroborate group and two oxygen atoms of the bidentate nitrite group or four oxygen atoms of two bidentate nitrito groups. A cyclic voltammetric study on the complexes indicates an irreversible redox couple (CuII/CuI) in DMF, giving a voltage of ca. −0.37 V versus s.c.e.  相似文献   

10.
Zhang  Zhi Hui  Bu  Xian He  Cao  Xi Chuan  Ma  Shu Ying  Zhu  Zhi Ang  Chen  Yun Ti 《Transition Metal Chemistry》1997,22(5):479-482
Two new macrocyclic dioxotetraamine ligands, 1-(2-methylthiophene)-1,4,8,11-tetraazacyclotetradecane-5,7-dione (H2L1) and 1,11-bis(2-methylthiophene)-1,4,8,11-tetraazacyclotetradecane-5,7-dione (H2L2), have been synthesized and characterized. The resulting dioxocyclams readily coordinate to CuII. The CuII complex of H2L2 has been isolated as a single crystal and the structure determined by X-ray diffraction analysis. The copper atom is in a square-planar environment with four basal nitrogen atoms. The solution behaviour of the CuII complexes, CuL1 and CuL2, has been further studied by e.s.r., u.v.–vis. and cyclic voltammetric techniques. A remarkable redshift has been observed for the maximum absorption band in the electronic spectra of CuL1 or CuL2 compared with that of the unsubstituted copper species (CuL). Electrochemical studies suggest that the introduction of thiophene pendant(s) to the macrocycle destabilizes the CuIII ion compared with the unsubstituted dioxocyclam, and the reason for this is discussed.  相似文献   

11.
Mononuclear and binuclear copper(II) complexes (1-8) with two ONS donor thiosemicarbazone ligands {salicylaldehyde 3-hexamethyleneiminyl thiosemicarbazone [H2L1] and salicylaldehyde 3-tetramethyleneiminyl thiosemicarbazone [H2L2]} have been prepared and physico-chemically characterized. IR, electronic and EPR spectra of the complexes have been obtained. The thiosemicarbazones bind to metal as dianionic ONS donor ligands in all the complexes except in [Cu(HL1)2] (2) and [Cu(HL2)2] (6). In compounds 2 and 6 the ligands are coordinated as monoanionic HL- ones. The magnetic susceptibility measurements indicate that all the complexes are paramagnetic. In complex [(CuL1)2] (1), the magnetic moment value is lower than the expected spin only value. In all the complexes g(||)>g( perpendicular)>2.0023 and G values within the range 2.5-3.5 are consistent with dx2-y2 ground state. The complexes were given the formula as [(CuL1)2] (1); [Cu(HL1)2] (2); [CuL1bpy] (3); [CuL1phen] (4); [CuL1gamma-pic].2H2O (5); [Cu(HL2)2] (6); [CuL2py].3H2O (7); [CuL2bipy] (8). The structure of the compound 8 have been solved by single crystal X-ray crystallography and was found to be distorted square pyramid around copper(II) ion.  相似文献   

12.
The copper(II)-3-pyridylmethanol (L) system was investigated in aqueous solution by two-dimensional ESR evaluation at 298 K, and computer simulation of the individual anisotropic spectra at 77 K. The data revealed that the paramagnetic copper(II) complexes [CuL] (2+), [CuL 2] (2+), [CuL 3] (2+), and [CuL 4] (2+) are formed up to pH approximately 7 at a moderate or high excess of ligand. As compared with chelating ligands, two differences were observed for the complexation of 3-pyridylmethanol with copper(II): (1) In contrast with the well-resolved spectra in frozen solution, considerable line-broadening and distortion of the spectral shapes were seen at 298 K, which was interpreted in terms of isomeric equilibria and the medium-rate interconversion of various complexes on the ESR time-scale. (2) At low temperature, there were dramatic changes in the concentration distribution, the minor complexes with higher numbers of coordinating ligands ([CuL 3] (2+) and in particular [CuL 4] (2+)) becoming strongly favored. This phenomenon is explained by the significant differences in the formation enthalpy values of various species, shifting the equilibria according to the van't Hoff equation, and a significant undercooling in the course of fast freezing of the solution, which enhances the changes of the concentration distribution.  相似文献   

13.
Cobalt(II), nickel(II) and copper(II) complexes are synthesized with 1,3,7,9-tetraaza- 4,6,10,12-tetraphenyl-2,8-dithiacyclododecane, a tetradentate ligand (L) and characterized by elemental analysis, molar conductance measurements, magnetic susceptibitity measurements, mass, i.r., electronic and e.p.r. spectral studies. All the complexes are non-electrolytes so they may be formulated as [M(L)X2] [where, M = Co(II), Ni(II) and Cu(II) and X = Cl and NO 3 ]. All the complexes are of high spin type. On the basis of i.r., electronic and e.p.r. spectral studies an octahedral geometry has been assigned for Co(II) and Ni(II) complexes and tetragonal geometry for Cu(II) complexes. The antimicrobial activities of the ligand and its complexes, as growth inhibiting agents, have been screened in vitro against two different species of bacteria and plant pathogenic fungi.  相似文献   

14.
Transition Metal Chemistry - Three mononuclear copper(II) complexes, viz. [CuL1] (1), [CuL2] (2), [CuL3] (3), and one nickel(II) complex, viz.[NiL3] (4) where...  相似文献   

15.
Reaction of 1-propylamino-4-acetato-1,4,7-triazacyclononane (L1), 1-benzyl-4-acetato-1,4,7-triazacyclononane (L2) and 1-benzyl-4-propylamino-1,4,7-triazacyclononane (L3) with a copper(II) salt gave Na2[CuL1](ClO4)3(1a), [CuL2]Cl (2) and [Cu2L32](ClO4)4.5H2O (3), respectively. [CuL4]ClO4 (4) was formed by reacting 1-formyl-4-ethylacetato-1,4,7-triazacyclononane with cupric chloride in aqueous solution. The X-ray crystal structures of the complexes reveal that the ligands generate distorted square pyramidal or square planar coordination environments about the Cu(II) centre, but in three complexes (1b, 3 and 4) weak interactions to an oxygen atom from a perchlorate anion and, in the case of 4, also to an amide nitrogen leading to tetragonally elongated octahedral Cu(II) geometries. In 4, the formyl group is found to reduce the coordinating ability of the macrocyclic nitrogen to which it is attached, as evidenced by the weak CuN interaction. The formation of five-membered chelate rings on coordination of the ligands further contributes to the distortion from the ideal geometries. The crystal lattices contain a number of novel supramolecular features. 1a contains a negatively charged sodium perchlorate chain of composition [Na2(ClO4)3]x(x-), with a complex series of Na-O-Na bridges flanked by [CuL1]+ units, while 3 contains highly complex hydrogen bonded sheets approximately 20 A thick that stack through van der Waals interactions. One-dimensional chains comprised of copper complexes are found in 2 and 4, and are held together by hydrogen bonds in 2 and acetate bridges between the copper cations in 4. The solution EPR spectra indicate that the copper(II) centres exist in isolated distorted square pyramidal (possibly square planar for 4) environments, while in the solid state there is evidence for the existence of weak exchange and dipole-dipole coupling for some complexes.  相似文献   

16.
Summary Synthesis of a new Schiff base derived from salicylaldehyde and 5-methylpyrazole-3-carbohydrazide, and its coordination compounds with nickel(II), cobalt(II), copper(II), manganese(II), zinc(II), zirconium(IV), dioxouranium(VI) and dioxomolybdenum(VI) are described. The ligand and the complexes have been characterized on the basis of analytical, conductance, molecular weight, i.r., electronic and n.m.r. spectra and magnetic susceptibility measurements. The stoichiometries of the complexes are represented as NiL · 3H2O, CoL · 2H2O, CuL, MnL · 2H2O, ZnL · H2O, Zr(OH)2(LH)2, Zr(OH)2L · 2MeOH, UO2L · MeOH and MoO2L · MeOH (where LH2 = Schiff base). The copper(II) complex shows a subnormal magnetic moment due to antiferromagnetic exchange interaction while the nickel(II), cobalt(II) and manganese (II) complexes show normal magnetic moments at room temperature. The i.r. and n.m.r. spectral studies show that the Schiff base behaves as a dibasic and tridentate ligand coordinating through the deprotonated phenolic.oxygen, enolic oxygen and azomethine nitrogen.  相似文献   

17.
18.
The synthesis of manganese(II), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes of a new ligand 2-thiophene-2-yl-3(thiophene-2-carboxylidene-amino)-1,2-dihydroquinazolin-4(3H)-one (TTCADQ) is described. The ligand and metal complexes were characterized by elemental analysis, conductivity measurements, spectral (u.v.–vis., i.r., 1D n.m.r., 2D hetcor and e.p.r.) and thermal studies. The formation of 1,2-dihydroquinazolin-4(3H)-one rather than hydrazone, in the reaction of aromatic aldehyde and o-aminobenzoylhydrazide is proved by single crystal X-ray diffraction and 2D hetcor n.m.r. studies. On the basis of elemental analysis, u.v.–vis.spectroscopy and magnetic moment studies, six coordinate geometry for all the complexes was proposed. The i.r. spectral studies reveal the bidentate behaviour of the ligand.  相似文献   

19.
Russian Journal of Coordination Chemistry - Two copper(II) complexes, [CuL1N3] (I) and [CuL2(μ1,?1-N3)] (II), where L1 = 2-[(2-diethylaminoethylimino)methyl]-4,6-difluorophenolate, L2 =...  相似文献   

20.
Three new copper(II) complexes, [CuL(1)(NO(2))](n) (1), [CuL(2)(NO(2))] (2), and [CuL(3)(NO(2))] (3), with three similar tridentate Schiff base ligands [HL(1) = 6-amino-3-methyl-1-phenyl-4-azahept-2-en-1-one, HL(2) = 6-amino-3-methyl-1-phenyl-4-azahex-2-en-1-one, and HL(3) = 6-diethylamino-3-methyl-1-phenyl-4-azahex-2-en-1-one] have been synthesized and characterized structurally and magnetically. In all three complexes, the tridentate Schiff base ligand and one oxygen atom of the nitrite ion constitute the equatorial plane around Cu(II), whereas the second oxygen atom of the nitrite ligand coordinates to one of the axial positions. In 1, this axially coordinated oxygen atom of the nitrite ligand also coordinates weakly to the other axial position of a Cu(II) ion of another unit to form a one-dimensional chain with the mu-nitrito-1kappa(2)O,O':2kappaO bridging mode. Complexes 2 and 3 are discrete monomers that are joined together by intermolecular H bonds and C-H....pi interactions in 2 and by only C-H....pi interactions in 3. A weak antiferromagnetism (J = -1.96(2) cm(-1)) is observed in complex 1 due to its asymmetric nitrite bridging. Complexes 2 and 3 show very weak antiferromagnetic interactions (J = -0.089 and -0.096 cm(-1), respectively) attributed to the presence of intermolecular H-bonding and C-H....pi interactions. The corresponding Cu(I) species produced by the electrochemical reduction of complexes 1 and 2 disproportionate to Cu(0) and Cu(2+,) whereas the reduced Cu(I) species of complex 3 seems to be stable presumably due to a higher tetrahedral distortion of the equatorial plane in 3 compared to that in 1 and 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号