首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Two new bacteria were isolated from human feces and were designated MT 104 and MT 162. They were able to produce bacteriocins that are active against five strains of Listeria monocytogenes. Bacteriocins produced by these isolated strains had 100% and 82.35% residual activity when they were treated by gamma radiation at doses of 4 and 40 kGy, respectively. A reduction of 1.0, 1.5 and 3 log CFU/g of L. monocytogenes was observed in sausage meat when treated with bacteriocins from MT 104, MT 162, and nisin, respectively. For synergic effect, the D10 value in presence of the bacteriocins produced by MT 104 showed a 1.08 fold increased relative sensitivity of L. monocytogenes as compared to control after 5 days. The highest synergic effect was observed in presence of nisin which led to 1.61 fold increased relative sensitivity. Combined treatments with nisin and γ-irradiation showed a synergic antimicrobial effect in meat after 24 h and 5 days of storage. A synergic effect was observed only after 5 days at 4 °C for the bacteriocin from MT 104, as compared to the bacteriocin produced by MT 162 that had only an additive antimicrobial effect in all conditions.  相似文献   

2.
The increase of multidrug-resistant pathogens and the restriction on the use antibiotics due to its side effects have drawn attention to the search for possible alternatives. Bacteriocins are small antimicrobial peptides produced by numerous bacteria. Much interest has been focused on bacteriocins because they exhibit inhibitory activity against pathogens. Lactic acid bacteria possess the ability to synthesize antimicrobial compounds (like bacteriocin) during their growth. In this study, an antibacterial substance (bacteriocin PJ4) produced by Lactobacillus helveticus PJ4, isolated from rat gut microflora, was identified as bacteriocin. It was effective against wide assay of both Gram-positive and Gram-negative bacteria involved in various diseases, including Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Enterococcus faecalis, and Staphylococcus aureus. The antimicrobial peptide was relatively heat-resistant and also active over a wide pH range of 2–10. It has been partially purified to homogeneity using ammonium sulfate precipitation and size exclusion chromatography and checked on reverse-phase high-performance liquid chromatography. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis of bacteriocin PJ4 purified through size exclusion chromatography resolved ~6.5 kDa protein with bacteriocin activity. The peptide is inactivated by proteolytic enzymes, trypsin, and lipase but not when treated with catalase, α-amylase, and pepsin. It showed a bactericidal mode of action against the indicator strains E. coli MTCC443, Lactobacillus casei MTCC1423, and E. faecalis DT48. Such characteristics indicate that this bacteriocin may be a potential candidate for alternative agents to control important pathogens.  相似文献   

3.
Bacteriocins, an antimicrobial peptide, is known to have wide spectrum antimicrobial activity against various pathogens. Because they are easily digested in the intestine, they are considered as safe and are widely used as food preservatives. Hence their purification and characterization have attracted considerable attraction, especially for those having activity against human pathogens. In this study, the bacteriocin produced by Pediococcus pentosaceus VJ13 was precipitated with cold acetone and purified by gel permeation chromatography and hydrophobic interaction chromatography. The bacteriocin exhibited antimicrobial activity against various pathogens, like Mycobacterium smegmatis, Klebsiella pneumonia, Clostridium perfringens and Staphylococcus epidermidis. The activity of bacteriocin was lost completely after treatment with protease, which revealed its proteinaceous nature. The bacteriocin was stable up to 100°C and exhibited antilisterial property which is a characteristic feature of class IIa bacteriocins. It was active within the pH range of 2–8 and stable against various chemicals and denaturants. Tricine SDS–PAGE revealed its molecular weight to be 4.0 kDa, where the corresponding activity against Listeria monocytogenes was also noted. Treatment of L. monocytogenes with bacteriocin decreased the viable cell count, and scanning electron microscope analysis revealed membrane pore formation that resulted in the release of intracellular content, suggesting its bactericidal effect. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Cheese whey hydrolyzates supplemented with phenylpyruvic acid (PPA) and commercial nutrients can be efficiently metabolized by Lactobacillus plantarum CECT-221 to biosynthesize some compounds with attractive applications in the food market. The main metabolites of cell-free extracts were antimicrobial compounds such as phenyllactic acid (PLA) and lactic acid (LA). The production of PLA by L. plantarum CECT-221 was evaluated in the Man–Rogosa–Sharpe broth supplemented with two biosynthetic precursors: phenylalanine or PPA. Using 30.5 mM PPA, the microorganism increased sevenfold the concentration of PLA producing 16.4 mM PLA in 46 h. A concentration of 40 mM PPA was a threshold to avoid substrate inhibition. The biosynthesis of whey hydrolyzates as a carbon source was enhanced by fed-batch fermentation of PPA; the average productivity of PLA increased up to 45.4?±?3.02 mM after 120 h with a product yield of 0.244 mM mM?1; meanwhile, LA reached 26.1?±?1.3 g L?1 with a product yield of 0.72 g g?1. Cell-free fed-batch extracts charged in wells showed bacteriocin activity with halos of 7.49?±?1.44 mm in plates inoculated with Carnobacterium piscicola and antimicrobial activity against Staphylococcus aureus (11.54?±?1.14 mm), Pseudomonas aeruginosa (10.17?±?2.46 mm), Listeria monocytogenes (7.75?±?1.31 mm), and Salmonella enterica (3.60?±?1.52 mm). Additionally, the analysis of the volatile composition of the headspace of this cell-free extract revealed that L. plantarum is a potential producer for natural aromas, such as acetophenone, with high price in the market. This is the first report of PLA production from cheese whey and PPA. The extracts showed bacteriocin activity and potential to be applied as an antimicrobial in the elaboration of safer foods.  相似文献   

5.
The bacteriocins of lactic acid bacteria have considerable potential for biopreservation. The Lactococcus lactis strain PSY2 (GenBank account no. JF703669) isolated from the surface of marine perch Perca flavescens produced antibacterial activity against pathogenic and spoilage-causing Gram-positive and Gram-negative bacteria viz. Arthrobacter sp., Acinetobacter sp., Bacillus subtilis, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus and possessed broad inhibitory spectrum. The biopreservative efficacy of the bacteriocin PSY2 was evaluated using fillets of reef cod, Epinephelus diacanthus. The fillets (10?g) were sprayed with 2.0?ml of 1,600?AU/ml bacteriocin, wrapped and kept under different storage temperatures viz., 4, 0 and ?18?°C. The biopreservative extended the shelf-life of fillets stored at 4?°C to >21?days as against <14?days observed in the untreated samples. The total count of spoilage bacteria was reduced by 2.5 logarithmic units in the treated sample during the 14th day of storage as against the control. Chemical analysis revealed a significant change (P?<?0.05) in the pH value, free fatty acid (as % oleic acid), total volatile base nitrogen and total methyl amine content in the treated samples. The overall acceptability in terms of sensory attributes was significantly higher in the bacteriocin-treated samples stored for 21?days at 4?°C while the untreated samples became unacceptable by the 14th day. The biopreservative gave no significant effect at ?18?°C. Thus, the bacteriocin derived from L. lactis PSY2 gave increased protection against spoilage bacteria and offers an alternative for the preservation of high-value sea foods.  相似文献   

6.
Plantaricin LD1, a bacteriocin produced by Lactobacillus plantarum LD1, was characterized for biochemical and antimicrobial properties. Bacteriocin showed stability at high temperatures (100 °C for 20 min and 121 °C for 15 min under 15 psi pressure), in a pH range of 2.0–8.0 and also in the presence of organic solvents, surfactants and detergents. The crude preparation was not affected by catalase, amylase and lipase but activity was reduced in the presence of pepsin, trypsin and proteinase K showing proteinaceous nature of the compound. The molecular weight of bacteriocin was found to be ~6.5 kDa, and antimicrobial activity was confirmed by bioassay. It inhibited not only related strains but also other Gram-positive and Gram-negative bacteria such as Lactobacillus curvatus NRRL B-4562, Lactococcus lactis subsp. lactis NRRL B-1821, Enterococcus faecium NRRL B-2354, Enterobacter cloacae NRRL B-14298, Micrococcus luteus, Staphylococcus aureus, urogenic Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Shigella flexneri and Vibrio sp. These properties of plantaricin LD1 suggest its applications not only in food safety but in therapeutics as well.  相似文献   

7.
8.
Lateral-flow enzyme immunochromatography coupled with an immunomagnetic step was developed for rapid detection of Listeria monocytogenes in food matrices. The target bacteria was first separated and concentrated by magnetic nanoparticles containing the enzyme and directly applied to the assay system to induce an antigen–antibody reaction without any additional steps. The color signals produced by an enzyme–substrate reaction at a specific site on the immunostrip were found to be directly proportional to the concentration of L. monocytogenes in the sample. The detection concept was demonstrated by performing an enzyme immunoassay on a microtiter well prior to applying it to the lateral-flow assay. Results of the chromatographic analysis yield a limit of detection of 95 and 97?±?19.5 CFU/mL in buffer solution and 2 % milk sample, respectively. In addition to the high sensitivity, it was also possible to shorten the separation and detection time to within 2 h. The system also showed no cross-reactivity with other bacteria (e.g., Escherichia coli O157:H7, Salmonella typhimurium, and Salmonella enteritidis). The analytical procedure developed will enable us to not only utilize the assay in the field where fast screening for pathogenic agents is required but also as a preventive measure to contain disease outbreak.  相似文献   

9.
Coculture fermentations show advantages for producing food additives from agroindustrial wastes, considering that different specified microbial strains are combined to improve the consumption of mixed sugars obtained by hydrolysis. This technology dovetails with both the growing interest of consumers towards the use of natural food additives and with stricter legislations and concern in developed countries towards the management of wastes. The use of this technology allows valorization of both cellulosic and hemicellulosic fractions of trimming vine shoots for the production of lactic acid (LA), phenyllactic acid (PLA), and biosurfactants (BS). This work compares the study of the potential of hemicellulosic and cellulosic fractions of trimming vine shoots as cheaper and renewable carbon sources for PLA and BS production by independent or coculture fermentations. The highest LA and PLA concentrations, 43.0 g/L and 1.58 mM, respectively, were obtained after 144 h during the fermentation of hemicellulosic sugars and simultaneous saccharification and fermentation (SSF) carried out by cocultures of Lactobacillus plantarum and Lactobacillus pentosus. Additionally, cell-bond BS decreased the surface tension (ST) in 17.2 U; meanwhile, cell-free supernatants (CFS) showed antimicrobial activity against Salmonella enterica and Listeria monocytogenes with inhibition halos of 12.1?±?0.6 mm and 11.5?±?0.9 mm, respectively.  相似文献   

10.
A lateral flow assay for rapid, simple and efficient determination of L. monocytogenes is presented. A monoclonal antibody (mAb) 1C1 against the peptide from P60 protein of L. monocytogenes was prepared and labeled with gold nanoparticles (AuNPs). The mAb 1C1 was paired with the mAb 10E7 against the P60 protein of all the Listeria spp. and used as a capture bioligand in a lateral flow assay. The AuNP-based strip test can detect the supernatant of eight common L. monocytogenes serotypes including 1/2a, 1/2b, and 4b with an equivalent detection limit of 3.7 × 106 CFU?mL?1 but does not detect four other Listeria spp. (L. ivanovii, L. innocua, L. welshimeri, and L. grayi). There was no cross-reactivity with six other Gram-negative and Gram-positive bacteria. The method was applied to the quantification of L. monocytogenes species in spiked milk samples within 13 h.
Graphical abstract Monoclonal antibody (mAb) 1C1 was prepared against the peptide from P60 protein of Listeria monocytogenes. The gold nanoparticle (AuNP) based strip sensor detects all the eight tested Listeria monocytogenes serotypes.
  相似文献   

11.
The aim of this work was to optimize, by means of molecular modeling software, biomimetic-based traps for pathogen detection suitable for analytical applications like screening or pre-analytical methods. The pathogen prototype system chosen was Listeria monocytogenes because of the large number of X ray and NMR structures available. 298 oligopeptides were computationally designed mimicking the binding pocket of the mammalian protein E-cadherin, the target of Listeria monocytogenes adhesion, internalin A. The contribution of individual peptides to bind was investigated using FRED, a protein-ligand docking program. Ten peptides were selected for experimental analysis taking as selection parameters the length, the position in the docking pocket and the score of simulated binding energy. A series of competition assays were carried out using high density colorimetric microarray using various bacteria species (Listeria monocytogenes, Listeria monocytogenes genetically modified without internalin A, Listeria innocua and Lactococcus lactis) in solution with computationally selected peptides. The data demonstrated that peptides could be able to distinguish Listeria monocytogenes with an EC50 up to 107cfu × mL?1. In particular the peptide with the best calculated binding score gave the highest statistically unambiguous response toward Listeria monocytogenes compared to other bacteria, demonstrating that rationally simulated approach can be useful as preliminary screening in the choice of biomimetic ligands.  相似文献   

12.
The synthesis and functional characterization of an antibiofilm exopolysaccharide (EPS) from a probiotic Enterococcus faecium MC13 were investigated. The temperature of 35 °C, pH of 6.5, and salinity of 1–2 % were found to be optimum for EPS production. The sucrose (30 g?l?1) and yeast extract (20 g?l?1) acted as suitable carbon and nitrogen sources, respectively, which strongly influenced EPS production with yield of 11.33 and 11.91 g?l?1. Based on the thin layer chromatography, EPS of E. faecium MC13 was found to be a heteropolysaccharide, composed of galactose and glucose sugar units with a molecular mass of 2.0?×?105?Da. Fourier transform infrared spectrum analysis of the EPS revealed many predominant functional groups including hydroxyl, carboxyl, and amide groups. EPS exhibited better emulsifying and flocculating activities which is relatively similar to those of commercial polysaccharides. In vitro antioxidant inspect of EPS showed lesser antioxidant activity than that of the control ascorbic acid. Thermal behavior of EPS was different from the other EPS produced by other lactic acid bacteria. In vitro antibiofilm assay of EPS exhibited significant biofilm inhibition, especially with Listeria monocytogenes. To the best of our knowledge, this is the first report on EPS of E. faecium with strong emulsifying and flocculating activities.  相似文献   

13.
The aim of this study was to evaluate 54 lactic acid bacteria (LAB) strains isolated from meat, fermented vegetables and dairy products for their capacity to produce antimicrobial activities against several bacteria and fungi. The strain designed TN635 has been selected for advanced studies. The supernatant culture of this strain inhibits the growth of all tested pathogenic including the four Gram-negative bacteria (Salmonella enterica ATCC43972, Pseudomonas aeruginosa ATCC 49189, Hafnia sp. and Serratia sp.) and the pathogenic fungus Candida tropicalis R2 CIP203. Based on the nucleotide sequence of the 16S rRNA gene of the strain TN635 (1,540 pb accession no FN252881) and the phylogenetic analysis, we propose the assignment of our new isolate bacterium as Lactobacillus plantarum sp. TN635 strain. Its antimicrobial compound was determined as a proteinaceous substance, stable to heat and to treatment with surfactants and organic solvents. Highest antimicrobial activity was found between pH 3 and 11 with an optimum at pH?=?7. The BacTN635 was purified to homogeneity by a four-step protocol involving ammonium sulfate precipitation, centrifugal microconcentrators with a 10-kDa membrane cutoff, gel filtration Sephadex G-25, and C18 reverse-phase HPLC. SDS-PAGE analysis of the purified BacTN635, revealed a single band with an estimated molecular mass of approximately 4 kDa. The maximum bacteriocin production (5,000 AU/ml) was recorded after a 16-h incubation in Man, Rogosa, and Sharpe (MRS) medium at 30?°C. The mode of action of the partial purified BacTN635 was identified as bactericidal against Listeria ivanovii BUG 496 and as fungistatic against C. tropicalis R2 CIP203.  相似文献   

14.
The aims of this study were to purify and characterize a bacteriocin produced by a strain of Enterococcus faecalis TG2 and to test the safety of the strain. In this work, the active peptide was purified through precipitation with 70% saturated ammonium sulfate, cation-exchange chromatography, and gel filtration. The specific activity of purified bacteriocin was 30,073.42 AU/mg of protein, which corresponded to a 33.34-fold increase. The molecular mass of the purified bacteriocin was 6.3362 kDa determined by LC-MS/MS. The ten amino acid of N-terminal was MTRSKKLNLR and the ten amino acid of C-terminal was ATGGAAGWKS. The activity of the bacteriocin was unaffected by pH 2–10 and thermostable but was sensitive to proteolytic enzymes. The antimicrobial activity of the bacteriocin was not affected by metal ions. Tween-20, Tween-80, Triton X-100, and EDTA did not affect the bacteriocin activity and SDS was able to increase the activity of bacteriocin. Bacteriocin activity was not lost after treatment by < 8% NaCl. Inhibitory spectrum of the bacteriocin showed a wide range of activities against other lactic acid bacteria, food-spoilage, and food-borne pathogens. Ent. faecalis TG2 was sensitive to tetracycline and erythromycin but resistant to ampicillin, gentamicin, kanamycin, and chloramphenicol. Results from PCR indicated that Ent. faecalis TG2 did not harbor any virulence genes. The study suggests that Ent. faecalis TG2 and its bacteriocin might be used as bio-preservatives in food products.  相似文献   

15.
Enterocin LR/6, a purified bacteriocin, exhibited broad inhibitory spectrum both against related as well as some food-borne pathogens such as Listeria monocytogenes, Yersinia enterocolitica, Aeromonas sp., Shigella sp., and Bacillus licheniformis. In this investigation, we have focused on L. monocytogenes as the target organism, as it is not only an important pathogen but can also survive over a wide range of environmental conditions such as refrigeration temperature, low pH, and high-salt concentration. This allows the pathogen to overcome many food preservation and safety barriers and poses a potential risk to human health. The enterocin LR/6 showed a bactericidal action against L. monocytogenes and completely inhibited the growth on agar plates, supplemented with 200 AU/ml of enterocin LR/6. The effectiveness of enterocin LR/6 in completely killing a population of acid-adapted (pH 5.2, 2 h) L. monocytogenes exposed to different temperatures (437 °C), pH (2.5–8.0), and osmotic (up to 30% NaCl) stress is reported here. This paper focuses on the key issue of killing of the acid-adapted L. monocytogenes cells under adverse environmental conditions.  相似文献   

16.
The present study was undertaken to develop edible nisin-microencapsulated beads in order to inhibit growth of Listeria monocytogenes in ready-to-eat (RTE) ham. Different concentrations of nisin (16, 31, and 63 μg/ml) were microencapsulated into alginate-cellulose nanocrystal beads. Microencapsulation kept the available nisin (63 μg/ml) content 20 times greater compared with free nisin (63 μg/ml) during 28 days of storage at 4 °C. Results showed that 63 μg/ml microencapsulated nisin exhibited 31.26 μg/ml available nisin content after 28 days of storage at 4 °C, whereas there was no available nisin content left for free nisin. Cooked ham slices were then coated by the microencapsulated nisin beads, inoculated with L. monocytogenes [~3 log colony-forming units (CFU)/g], and stored at 4 °C under vacuum packaging for 28 days. The beads containing 16, 31, and 63 μg/ml nisin significantly (P ≤ 0.05) reduced the L. monocytogenes counts by 2.65, 1.50, and 3.04 log CFU/g after 28 days of storage compared with free nisin. Furthermore, microencapsulated nisin beads did not change the physicochemical properties (pH and color) of RTE ham during storage.  相似文献   

17.
An oscillatory-flow multiplex PCR method in a capillary microfluidic channel has been developed for the simultaneous determination of pre-purified DNA of multiple foodborne bacterial pathogens. The PCR solution passes three temperature zones in an oscillatory manner. The thermal stability and sample evaporation of the microfluidic device were investigated. Under controlled conditions, a highly efficient multiplex PCR was accomplished as demonstrated for the simultaneous amplifications of 278 bp, 168 bp, and 106 bp DNA fragments within 35 min after 35 cycles for simultaneous detection of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes. This is much shorter than that of a conventional PCR machine. The detection limits of bacterial genome DNA for the three species are about 399, 314, and 626 copies per μL, respectively. This is comparable to those obtained with the conventional multiplex PCR. Consequently, the oscillatory-flow multiplex PCR technology holds good potential for rapid amplification and detection of nucleic acids of microbial foodborne pathogens.
Figure
By using an oscillatory-flow multiplex PCR technology, the simultaneous amplifications of 278 bp, 168 bp, and 106 bp DNA fragments can be achieved in 35 min for detection of S. enterica, E. coli O157:H7, and L. monocytogenes. This is much shorter than that of a conventional multiplex PCR.  相似文献   

18.
The study details the investigations on the ability of Lactobacillus plantarum CFR 2194, an isolate from kanjika, a rice-based ayurvedic fermented product, to produce biosurfactant. Surfactant production, as a function of fermentation time, indicates that the maximum production occurred at 72 h under stationary conditions. Isolation, partial purification, and characterization of the biosurfactant produced have been carried out, and Fourier transform infrared spectroscopy (FTIR) spectra demonstrated that biosurfactants were constituted by protein and polysaccharide fractions, i.e., possessed the structure typical of glycoprotein, which is affected by the medium composition and the phase of growth of the biosurfactant-synthesizing strain. Critical micelle concentration (cmc) of the biosurfactant was found to be 6 g l?1. The emulsification index (EI), emulsification activity (EA), and emulsion stability (ES) values of the biosurfactant have confirmed its emulsification property. Aqueous fractions of the produced biosurfactant exhibited a significant antimicrobial activity against the food-borne pathogenic species: Escherichia coli ATCC 31705, E. coli MTCC 108, Salmonella typhi, Yersinia enterocolitica MTCC 859, and Staphylococcus aureus F 722. More importantly, the biosurfactant from L. plantarum showed antiadhesive property against above food-borne pathogens. The results thus indicate the potential for developing strategies to prevent microbial colonization of food contact surfaces and health-care prosthesis using these biosurfactants.  相似文献   

19.
Lactic acid bacteria strains Lactobacillus plantarum CWBI-B534 and Leuconostoc ssp. mesenteroïdes (L. mesenteroïdes) Kenya MRog2 were produced in bioreactor, concentrated, with or without cryoprotectants. In general, viable population did not change significantly after freeze-drying (p?>?0.05). In most cases, viable population for cells added with cryoprotectants was significantly lower than those without (p?16:0), palmitoleic (C16:1), stearic (C18:0), oleic (C18:1), linoleic (C18:2), and linolenic (C18:3) acids were identified. Four of them, C16:0, C16:1, C18:0, and C18:1, make up more than 94% or 93% of the fatty acids in L. mesenteroides and L. plantarum, respectively, with another one, namely, C18:3, making a smaller (on average 5–6%, respectively) contribution. The C18:2 contributed very small percentages (on average?≤?1%) to the total in each strain. C16:0 had the highest proportion at most points relative to other fatty acids. Moisture content and water activity (a w) increased significantly during the storage period. It was observed that C16:1/C16:0, C18:0/C16:0 and C18:1/C16:0 ratios for freeze-dried L. mesenteroides or L. plantarum, with or without cryoprotectants, did not change significantly during the storage period. According to the packaging mode and storage temperatures, C18:2/C16:0 and C18:3/C16:0 ratios for freeze-dried L. mesenteroides and L. plantarum with or without cryoprotectants decreased as the storage time increased. However, a higher C18:2/C16:0 or C18:3/C16:0 ratio for L. mesenteroides and L. plantarum was noted in the freeze-dried powder held at 4 °C or under vacuum and in dark than at 20 °C or in the presence of oxygen and light.  相似文献   

20.
New bioactive nanocomposite films were prepared by compression molding method for food applications. Film matrix was composed of poly(lactic acid) containing cellulose nanocrystals (PLA-CNC). Nanocomposite films were converted to bioactive films using nisin as an antimicrobial agent by an adsorption coating method. Resulting antimicrobial films were then introduced in packages containing sliced cooked ham as a food model and stored for 14 days at 4 °C to determine their inhibiting capacity against Listeria monocytogenes and their physicochemical and structural properties. The study also focused on the nisin release from the films by using an agar diffusion bioassay. It was observed that mechanical properties such as tensile strength, tensile modulus, elongation at break and water vapor permeability values of the bioactive films were stable after 14 days of storage. Fourier transform infrared spectroscopy analysis allowed characterizing the adsorption of nisin onto PLA-CNC surface. Microbiological analysis of sliced cooked ham inoculated with L. monocytogenes (3 log CFU/g) allowed determining the potentiality of nisin as a strong antimicrobial agent in PLA-CNC-based films. Bioactive PLA-CNC-nisin films showed a significant reduction of L. monocytogenes in ham from day 1 and a total inhibition from day 3. The percentage of nisin release increased continuously from day 0 to day 14, up to 21 % at day 14. These results demonstrated the potential application of PLA-CNC-nisin films on controlling the growth of food pathogens in meat products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号