首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In this work, a new approach for acetone–butanol–ethanol (ABE) production has been proposed. Direct fermentation of native starches (uncooked process) was investigated by using granular starch hydrolyzing enzyme (GSHE) and Clostridium saccharoperbutylacetonicum N1-4. Even the process was carried out under suboptimal condition for activity of GSHE, the production of ABE was similar with that observed in conventional process or cooked process in terms of final solvent concentration (21.3?±?0.4 to 22.4?±?0.4 g/L), butanol concentration (17.5?±?0.4 to 17.8?±?0.3 g/L) and butanol yield (0.33 to 0.37 g/g). The production of solvents was significantly dependent on the source of starches. Among investigated starches, corn starch was more susceptible to GSHE while cassava starch was the most resistant to this enzyme. Fermentation using native corn starch resulted in the solvent productivity of 0.47 g/L h, which was about 15 % higher than that achieved in cooked process. On the contrary, uncooked process using cassava and wheat starch resulted in the solvent productivity of 0.30 and 0.37 g/L h, which were respectively about 30 % lower than those obtained in cooked process. No contamination was observed during all trials even fermentation media were prepared without sterilization. During the fermentation using native starches, no formation of foam is observed. This uncooked process does not require cooking starchy material; therefore, the thermal energy consumption for solvent production would remarkably be reduced in comparison with cooked process.  相似文献   

2.
In this work, acetone–butanol–ethanol (ABE) fermentation characteristics of cassava starch and cassava chips when using Clostridium saccharoperbutylacetonicum N1-4 was presented. The obtained results in batch mode using a 1-L fermenter showed that C. saccharoperbutylacetonicum N1-4 was a hyperamylolytic strain and capable of producing solvents efficiently from cassava starch and cassava chips, which was comparable to when glucose was used. Batch fermentation of cassava starch and cassava chips resulted in 21.0 and 19.4 g/L of total solvent as compared with 24.2 g/L of total solvent when using glucose. Solvent productivity in fermentation of cassava starch was from 42% to 63% higher than that obtained in fermentation using corn and sago starches in the same condition. In fermentation of cassava starch and cassava chips, maximum butanol concentration was 16.9 and 15.5 g/L, respectively. Solvent yield and butanol yield (based on potential glucose) was 0.33 and 0.41, respectively, for fermentation of cassava starch and 0.30 and 0.38, respectively for fermentation using cassava chips.  相似文献   

3.
Bioconversion of lignocellulose to biofuels suffers from the degradation compounds formed during pretreatment and acid hydrolysis. In order to achieve an efficient biomass to biofuel conversion, detoxification is often required before enzymatic hydrolysis and microbial fermentation. Prehydrolysates from ethanol organosolv-pretreated pine wood were used as substrates in butanol fermentation in this study. Six detoxification approaches were studied and compared, including overliming, anion exchange resin, nonionic resin, laccase, activated carbon, and cysteine. It was observed that detoxification by anion exchange resin was the most effective method. The final butanol yield after anion exchange resin treatment was comparable to the control group, but the fermentation was delayed for 72 h. The addition of Ca(OH)2 was found to alleviate this delay and improve the fermentation efficiency. The combination of Ca(OH)2 and anion exchange resin resulted in completion of fermentation within 72 h and acetone–butanol–ethanol (ABE) production of 11.11 g/L, corresponding to a yield of 0.21 g/g sugar. The cysteine detoxification also resulted in good detoxification performance, but promoted fermentation towards acid production (8.90 g/L). The effect of salt on ABE fermentation was assessed and the possible role of Ca(OH)2 was to remove the salts in the prehydrolysates by precipitation.  相似文献   

4.
In this article we report on acetone butanol ethanol (ABE) fermentation characteristics of degermed corn when using Clostridium beijerinckii BA101. Recent economic studies suggested that recovery of germ from corn and hence corn oil would help to make the ABE fermentation process more economical. C. beijerinckii BA101 ferments corn mash efficiently to produce ABE under appropriate nutritional and environmental conditions. Corn mash contains germ/corn oil that is, possibly, ancillary to the production of butanol during the ABE fermentation process. Since the presence of corn oil is not a critical factor in solvent fermentation, it can be removed and this will allow for byproduct credit. Batch fermentation of degermed corn resulted in 8.93 g/L of total ABE production as compared with 24.80 g/L of total ABE when supplemented with P2 medium nutrients. During the course of the germ separation process, corn steeping is required prior to grinding and removing the germ. It is likely that some nutrients from the corn are leached out during the steeping process. This may reduce the rate of fermentation and impact the final concentration of butanol/ABE that can be achieved. Fermentation of degermed corn with corn steep liquor resulted in the production of 19.28 g/L of ABE.  相似文献   

5.
Butanol, a promising biofuel, can be produced by ABE (acetone, butanol and ethanol) fermentation using e.g. Clostridium acetobutylicum. However, the butanol concentration in the resulting broth is limited to only ca. 20 g/L due to the toxicity for the microorganisms. This low product concentration demands an efficient recovery process for successful commercialization of this process. In this study, a structured adsorbent in the form of steel monolith coated with a silicalite-1 film was prepared using the in situ growth method. The adsorbent was carefully characterized by SEM and XRD. The performance of the adsorbent was evaluated by performing breakthrough experiments at room temperature using model ABE fermentation broths and the performance was compared with that of traditional adsorbents in the form of beads. The structured silicalite-1 adsorbent showed less saturation loading time as compared to commercial binder free silicalite-1 beads, reflecting the different dimensions of the columns used, set by experimental constraints. Studies of the desorption process showed that by operating at appropriate conditions, butanol with high concentration i.e. up to 95.2 wt% for butanol–water model system and 88.5 wt% for ABE fermentation broth can be obtained using the structured silicalite-1 adsorbent. Commercial silicalite-1 beads also showed good selectivity but the concentration of butanol in the desorbed product was limited to 70 % for the butanol–water model system and 69 % for ABE fermentation broth, probably as a result of entrained liquid between the beads.  相似文献   

6.
The optimal conditions for acetone–butanol–ethanol (ABE) production were evaluated using waste seaweed from Gwangalli Beach, Busan, Korea. The waste seaweed had a fiber and carbohydrate, content of 48.34%; these are the main resources for ABE production. The optimal conditions for obtaining monosaccharides based on hyper thermal (HT) acid hydrolysis of waste seaweed were slurry contents of 8%, sulfuric acid concentration of 138 mM, and treatment time of 10 min. Enzymatic saccharification was performed using 16 unit/mL Viscozyme L, which showed the highest affinity (Km?=?1.81 g/L). After pretreatment, 34.0 g/L monosaccharides were obtained. ABE fermentation was performed with single and sequential fermentation of Clostridium acetobutylicum and Clostridium tyrobutyricum; this was controlled for pH. A maximum ABE concentration of 12.5 g/L with YABE 0.37 was achieved using sequential fermentation with C. tyrobutyricum and C. acetobutylicum. Efficient ABE production from waste seaweed performed using pH-controlled culture broth and sequential cell culture.  相似文献   

7.
The search for renewable sources of energy has led to renewed interests on the biochemical route for the production of butanol. Butanol production suffers from several drawbacks, mainly caused by butanol inhibition to the butanol-producing microorganism which makes it economically uncompetitive against the chemical process. One possible solution proposed is the in situ recovery of acetone–butanol–ethanol (ABE). Among the in situ recovery options, membrane processes like pervaporation have a great potential. Thus, the effects of temperature, feed concentration, and ultrasound irradiation on permeate concentration and permeation flux for the recovery of butanol/ABE by pervaporation from aqueous solutions were investigated in this study. In the butanol–water system, permeate butanol concentration as well as flux increased with an increase in temperature and butanol feed concentration. When pervaporation studies with ABE–water mixture were carried out at 60 °C for 2, 4, 8, 16, and 24 h, pervaporation profile revealed an optimal permeate concentration as well as permeation flux. Applications of ultrasound irradiation on pervaporation improved permeate concentration by about 23 g/L for both butanol and ABE. Ultrasound irradiation also improved butanol and ABE mass permeation flux by about 13 and 11 %, respectively.  相似文献   

8.
Xylose mother liquor (XML) is a by-product of xylose production through acid hydrolysis from corncobs, which can be used potentially for alternative fermentation feedstock. Sixteen Clostridia including 13 wild-type, 1 industrial strain, and 2 genetically engineered strains were screened in XML, among which the industrial strain Clostridium acetobutylicum EA 2018 showed the highest titer of solvents (12.7 g/L) among non-genetic populations, whereas only 40 % of the xylose was consumed. An engineered strain (2018glcG-TBA) obtained by combination of glcG disruption and expression of the d-xylose proton-symporter, d-xylose isomerase, and xylulokinase was able to completely utilize glucose and l-arabinose, and 88 % xylose in XML. The 2018glcG-TBA produced total solvents up to 21 g/L with a 50 % enhancement of total solvent yield (0.33 g/g sugar) compared to that of EA 2018 (0.21 g/g sugar) in XML. This XML-based acetone–butanol–ethanol fermentation using recombinant 2018glcG-TBA was estimated to be economically promising for future production of solvents.  相似文献   

9.
The aim of this work was to optimize the enzymatic hydrolysis of the cellulose fraction of cashew apple bagasse (CAB) after diluted acid (CAB-H) and alkali pretreatment (CAB-OH), and to evaluate its fermentation to ethanol using Saccharomyces cerevisiae. Glucose conversion of 82?±?2 mg/g CAB-H and 730?±?20 mg/g CAB-OH was obtained when 2% (w/v) of solid and 30 FPU/g bagasse was used during hydrolysis at 45 °C, 2-fold higher than when using 15 FPU/g bagasse, 44?±?2 mg/g CAB-H, and 450?±?50 mg/g CAB-OH, respectively. Ethanol concentration and productivity, achieved after 6 h of fermentation, were 20.0?±?0.2 g L?1 and 3.33 g L?1 h?1, respectively, when using CAB-OH hydrolyzate (initial glucose concentration of 52.4 g L?1). For CAB-H hydrolyzate (initial glucose concentration of 17.4 g L?1), ethanol concentration and productivity were 8.2?±?0.1 g L?1 and 2.7 g L?1 h?1 in 3 h, respectively. Hydrolyzates fermentation resulted in an ethanol yield of 0.38 and 0.47 g/g glucose with pretreated CAB-OH and CAB-H, respectively. Ethanol concentration and productivity, obtained using CAB-OH hydrolyzate, were close to the values obtained in the conventional ethanol fermentation of cashew apple juice or sugar cane juice.  相似文献   

10.
In this study, we have used ultraviolet (UV) and γ-ray induction to get a catabolite repression resistant and thermotolerant mutant with enhanced ethanol production along with optimization of sugar concentration and temperature of fermentation. Classical mutagenesis in two consecutive cycles of UV- and γ-ray-induced mutations evolved one best catabolite-resistant and thermotolerant mutant Saccharomyces cerevisiae MLD10 which showed improved ethanol yield (0.48?±?0.02 g g?1), theoretical yield (93?±?3 %), and extracellular invertase productivity (1,430?±?50 IU l?1 h?1), respectively, when fermenting 180 g sugars l?1 in molasses medium at 43 °C in 300 m3 working volume fermenter. Ethanol production was highly dependent on invertase production. Enthalpy (ΔH*) (32.27 kJ M?1) and entropy (ΔS*) (?202.88 J M?1 K?1) values at 43 °C by the mutant MLD10 were significantly lower than those of β-glucosidase production by a thermophilic mutant derivative of Thermomyces lanuginosus. These results confirmed the enhanced production of ethanol and invertase by this mutant derivative. These studies proved that mutant was significantly improved for ethanol production and was thermostable in nature. Lower fermentation time for ethanol production and maintenance of ethanol production rates (3.1 g l?1 h?1) at higher temperature (43 °C) by this mutant could decrease the overall cost of fermentation process and increase the quality of ethanol production.  相似文献   

11.
Clostridium acetobutylicum strains used in most Chinese ABE (acetone–butanol–ethanol) plants favorably ferment starchy materials like corn, cassava, etc., rather than sugar materials. This is one major problem of ABE industry in China and significantly limits the exploitation of cheap waste sugar materials. In this work, cane molasses were utilized as substrate in ABE production by Clostridium saccharobutylicum DSM 13864. Under optimum conditions, total solvent of 19.80 g/L (13.40 g/L butanol) was reached after 72 h of fermentation in an Erlenmeyer flask. In a 5-L bioreactor, total solvent of 17.88 g/L was attained after 36 h of fermentation, and the productivity and yield were 0.50 g/L/h and 0.33 g ABE/g sugar consumption, respectively. To further enhance the productivity, a two-stage semicontinuous fermentation process was steadily operated for over 8 days (205 h, 26 cycles) with average productivity (stage II) of 1.05 g/L/h and cell concentration (stage I) of 7.43 OD660, respectively. The average batch fermentation time (stage I and II) was reduced to 21−25 h with average solvent of 15.27 g/L. This study provides valuable process data for the development of industrial ABE fermentation process using cane molasses as substrate.  相似文献   

12.
This study presents a novel and integrated preparation technology for nattokinase functional food, including strain screening, fermentation, separation, and encapsulation. To rapidly screen a nattokinase-productive strain, PCR-based screening method was combined with fibrinolytic activity-based method, and a high productive strain, Bacillus subtilis LSSE-22, was isolated from Chinese soybean paste. Reduction of poly-??-glutamic acid (??-PGA) concentration may contribute to separation of nattokinase and reduction of late-onset anaphylaxis risk. Chickpeas were confirmed as the favorable substrate for enhancement of nattokinase production and reduction of ??-PGA yield. Using cracked chickpeas, the nattokinase activity reached 356.25?±?17.18?FU/g (dry weight), which is much higher than previous reports. To further reduce ??-PGA concentration, ethanol fractional extraction and precipitation were applied for separation of nattokinase. By extraction with 50?% and precipitation with 75?% ethanol solution, 4,000.58?±?192.98?FU/g of nattokinase powders were obtained, and the activity recovery reached 89?±?1?%, while ??-PGA recovery was reduced to 21?±?2?%. To improve the nattokinase stability at acidic pH condition, the nattokinase powders were encapsulated, and then coated with methacrylic acid?Cethyl acrylate copolymer. After encapsulation, the nattokinase was protected from being denatured under various acid conditions, and pH-responsible controlled release at simulated intestinal fluid was realized.  相似文献   

13.
Acetone, butanol, ethanol (ABE, or solvents) were produced from starch-based packing peanuts in batch and continuous reactors. In a batch reactor, 18.9 g/L of total ABE was produced from 80 g/L packing peanuts in 110 h of fermentation. The initial and final starch concentrations were 69.6 and 11.1 g/L, respectively. In this fermentation, ABE yield and productivity of 0.32 and 0.17 g/(L·h) were obtained, respectively. Compared to the batch fermentation, continuous fermentation of 40 g/L of starch-based packing peanuts in P2 medium resulted in a maximum solvent production of 8.4 g/L at a dilution rate of 0.033 h−1. This resulted in a productivity of 0.27 g/(L·h). However, the reactor was not stable and fermentation deteriorated with time. Continuous fermentation of 35 g/L of starch solution resulted in a similar performance. These studies were performed in a vertical column reactor using Clostridium beijerinckii BA101 and P2 medium. It is anticipated that prolonged exposure of culture to acrylamide, which is formed during boiling/autoclaving of starch, affects the fermentation negatively.  相似文献   

14.
To improve the fermentation efficiency of lycopene, a plasma jet, driven by an active helium atom supplied with atmospheric and room temperature plasma (ARTP) biological breeding system, was used as a new method to generate mutations in Blakeslea trispora (?). After several rounds of screening, a mutant A5 with high concentration of lycopene and dry biomass was isolated, which showed a maximum lycopene concentration (26.4?±?0.2 mg/g dry biomass) which was 55 % higher than the parent strain (16.9?±?0.3 mg/g dry biomass) in the production of lycopene. Compared with parent strain, B. trispora A5 required less dissolved oxygen (10 % less than that of parent strain) to reach maximum concentration in a 5-L stirred tank reactor batch fermentation.  相似文献   

15.
Acetogen Clostridum sp. MT1962 produced 287 mM acetate (p?<?0.005) and 293 mM ethanol (p?<?0.005) fermenting synthesis gas blend 60 % CO and 40 %?H2 in single-stage continuous fermentation. This strain was metabolically engineered to the biocatalyst Clostridium sp. MTButOH1365. The engineered biocatalyst lost production of ethanol and acetate while initiated the production of 297 mM of n-butanol (p?<?0.005). The metabolic engineering comprised Cre-lox66/lox71-based elimination of phosphotransacetylase and acetaldehyde dehydrogenase along with integration to chromosome synthetic thiolase, 3-hydroxy butyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase, and NAD-dependent butanol dehydrogenase. This is the first report on elimination of acetate and ethanol production genes and expression of synthetic gene cluster encoding n-butanol biosynthesis pathway in acetogen biocatalyst for selective fuel n-butanol production with no antibiotic support for the introduced genes.  相似文献   

16.
Mixtures of acetone, butanol, and ethanol (ABE) are common intermediate products in the production of biofuels via biomass fermentation. Their separation to yield, for example, bio‐butanol, is still difficult due to the lack of a fundamental understanding of these mixtures at the molecular level. In order to bridge this gap, a detailed analysis of characteristic features of the vibrational spectrum is carried out. A systematic study of the binary solutions of acetone with ethanol and butanol does not only reveal a universal behaviour at the molecular level when acetone is mixed with short‐chain alcohols, it also shows that the phenomena at a length scale between the molecules and in the macroscopic solution need to be taken into account to understand the structure–property relationships. The size of self‐associated molecule clusters seems to determine whether or not a system exhibits an azeotrope. When a second alcohol is added to an acetone/alcohol solution, no additional non‐idealities are induced, which is advantageous for modelling ternary ABE mixtures and for improving their processing in the production of biofuels.  相似文献   

17.
The acetic acid bacterium Acetobacter pasteurianus plays an important role in acetic acid fermentation, which involves oxidation of ethanol to acetic acid through the ethanol respiratory chain under specific conditions. In order to obtain more suitable bacteria for the acetic acid industry, A. pasteurianus JST-S screened in this laboratory was compared with A. pasteurianus CICC 20001, a current industrial strain in China, to determine optimal fermentation parameters under different environmental stresses. The maximum total acid content of A. pasteurianus JST-S was 57.14?±?1.09 g/L, whereas that of A. pasteurianus CICC 20001 reached 48.24?±?1.15 g/L in a 15-L stir stank. Metabolic flux analysis was also performed to compare the reaction byproducts. Our findings revealed the potential value of the strain in improvement of industrial vinegar fermentation.  相似文献   

18.
The present work explores brewery wastewater as a novel substrate for fumaric acid production employing the filamentous fungal strain Rhizopus oryzae 1526 through submerged fermentation. The effects of different parameters such as substrate total solid concentrations, fermentation pH, incubation temperature, flask shaking speed, and inoculum size on the fungal morphologies were investigated. Different morphological forms (mycelium clumps, suspended mycelium, and solid/hairy pellets) of R. oryzae 1526 were obtained at different applied fermentation pH, incubation temperature, flask shaking speed, and inoculum size. Among all the obtained morphologies, pellet morphology was found to be the most favorable for enhanced production of fumaric acid for different studied parameters. Scanning electron microscopic investigation was done to reveal the detailed morphologies of the pellets formed under all optimized conditions. With all the optimized growth conditions (pH 6, 25 °C, 200 rpm, 5 % (v/v) inoculum size, 25 g/L total solid concentration, and pellet diameter of 0.465?±?0.04 mm), the highest concentration of fumaric acid achieved was 31.3?±?2.77 g/L. The results demonstrated that brewery wastewater could be used as a good substrate for the fungal strain R. oryzae 1526 in submerged fermentation for the production of fumaric acid.  相似文献   

19.
The present research deals with the development of a hybrid yeast strain with the aim of converting pentose and hexose sugar components of lignocellulosic substrate to bioethanol by fermentation. Different fusant strains were obtained by fusing protoplasts of Saccharomyces cerevisiae and xylose-fermenting yeasts such as Pachysolen tannophilus, Candida shehatae and Pichia stipitis. The fusants were sorted by fluorescent-activated cell sorter and further confirmed by molecular characterization. The fusants were evaluated by fermentation of glucose?Cxylose mixture and the highest ethanol producing fusant was used for further study to ferment hydrolysates produced by acid pretreatment and enzymatic hydrolysis of cotton gin waste. Among the various fusant and parental strains used under present study, RPR39 was found to be stable and most efficient strain giving maximum ethanol concentration (76.8?±?0.31?g L?1), ethanol productivity (1.06?g L?1 h?1) and ethanol yield (0.458?g g?1) by fermentation of glucose?Cxylose mixture under test conditions. The fusant has also shown encouraging result in fermenting hydrolysates of cotton gin waste with ethanol concentration of 7.08?±?0.142?g L?1, ethanol yield of 0.44?g g?1, productivity of 0.45?g L?1?h?1 and biomass yield of 0.40?g g?1.  相似文献   

20.
Marine diatom, strain JPCC DA0580, and marine green microalga strain NKG400014 were selected as high neutral lipid-producers from marine microalgal culture collection toward biodiesel production. These strains were tentatively identified as Navicula sp. and Chlorella sp., respectively, by 18S rDNA analysis. Growth and lipid accumulation conditions of both strains were analyzed by changing nutrient concentrations in growth media and initial illuminance intensity. The highest productivity of fatty acid methyl ester (FAME) reached to 154 mg/L/week for NKG400014 and 185 mg/L/week for JPCC DA0580. Gas chromatography/mass spectrometry analysis indicates that FAME fraction from NKG400014 mainly contained 9-12-15-octadecatrienoate (C18:3) and that from JPCC DA0580 mainly contained methyl palmitate (C16:0) and methyl palmitoleate (C16:1). Furthermore, calorimetric analysis revealed that the energy content of strain was 4,233?±?55 kcal/kg (i.e., 15.9?±?0.2 MJ/kg) for NKG400014 and 6,423?±?139 kcal/mg (i.e., 26.9?±?0.6 MJ/kg) for JPCC DA0580, respectively. The value from JPCC DA0580 was equivalent to that of coal. The strains NKG400014 and JPCC DA0580 will become a promising resource that can grow as dominant species in the open ocean toward production of both liquid and solid biofuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号