首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
X荧光光谱技术在油品硫分析中的应用   总被引:3,自引:0,他引:3  
选择校正曲线法定量,在能量色散X荧光光谱仪上建立汽油、柴油和重油中硫分析方法。方法重复性、再现性符合国家标准要求,分析效率高。  相似文献   

2.
A novel porous oil absorbing resin with the main monomers of stearyl methacrylate and isooctyl methacrylate was synthesized using suspension polymerization. The synthesis experiments were conducted using the response surface design method. And the influences of initiator concentration, cross‐linker concentration, and dispersant concentration were investigated. Through analyzing the second‐order polynomial mathematical models and the corresponding data, the mutual effects between these factors on the oil‐absorption performance were obtained. The response surface was used to analyze the oil (gasoline, diesel, and kerosene) absorption performance in the pure oil samples and oily water samples, respectively. The content of initiator and cross‐linker exhibited a necessary effect on the absorption of gasoline and kerosene. Moreover, the two most significant factors for diesel are the amount of initiator and dispersant. The experimental results showed that the oil‐absorbing resin synthesized under the optimized condition could achieve better oil‐absorption rate on all three oils. The absorption rates of gasoline, diesel, and kerosene are 10.14, 10.73, and 11.69 g/g, respectively, which the deoiling rate can reach closed 100% in the water sample containing gasoline and kerosene.  相似文献   

3.
Plasma Assisted Catalytic Reduction (PACR) of NO x has been investigated at laboratory scale for gas stream compositions representative of marine diesel exhausts. PACR NO x reduction in excess of 90% was measured at 350°C, a plasma specific energy of 60 J/l and two NO x concentrations (1,200 and 1,800 ppm). PACR NO x reduction of over 50% was measured for simulated marine engine conditions at 250°C, 60 J/l and 1,200 ppm NO x . The performance under these conditions could be increased, achieving a peak of ∼74% NO x reduction, although at a relatively high plasma power. Water, present in diesel exhaust, was shown to inhibit the poisoning effects of fuel sulphur using SO2 as a representative exhaust component. The PACR system performance demonstrated tolerance to simulated fuel sulphur levels of up to 1% for the duration of the tests. PACR performance was also shown to be sensitive to the amount of hydrocarbon reductant used.  相似文献   

4.
The first reliable quantification of hydrogen peroxide (H(2)O(2)) formed during the low-temperature oxidation of an organic compound has been achieved thanks to a new system that couples a jet stirred reactor to a detection by continuous wave cavity ring-down spectroscopy (cw-CRDS) in the near-infrared. The quantification of this key compound for hydrocarbon low-temperature oxidation regime has been obtained under conditions close to those actually observed before the autoignition. The studied hydrocarbon was n-butane, the smallest alkane which has an oxidation behavior close to that of the species present in gasoline and diesel fuels.  相似文献   

5.
The kinetic modeling of the pyrolysis and combustion of liquid transportation fuels is a very complex task for two different reasons: the challenging characterization of the complex mixture of several hydrocarbon isomers and the complexity of the oxidation mechanisms of large hydrocarbon and oxygenated molecules. While surrogate mixtures of reference components allow to tackle the first difficulty, the complex behavior of the oxidation mechanisms is mostly overcome by reducing the total number of involved species by adopting a lumping approach. After a first investigation of the different liquid fuels (gasoline, kerosene, and diesel fuels), a short discussion on the lumping techniques allows to highlight the advantages of this approach. The lumped POLIMI pyrolysis and oxidation mechanism of hydrocarbon and oxygenated fuels is then used for generating several skeletal mechanisms for typical surrogate mixtures, moving from pure n‐heptane up to heavy diesel fuels. These skeletal models are simply reduced with a reaction flux analysis, and they involve between 100 and 200 species. While these sizes already allow detailed computational fluid dynamics (CFD) calculations in internal combustion engines, further reduction phases are necessary when the interest is toward more complex CFD computations. To maintain the standard structure of the skeletal mechanisms, successive reduction phases are not considered. Moreover, new regulations pushed toward a greater use of renewable fuels. For these reasons, the skeletal models are also extended to biogasolines including methanol, ethanol, and n‐butanol. Similarly, skeletal models of diesel and biodiesel fuels, including methyl esters, are also provided. Several comparisons with experimental data and complete validations in the operating range of internal combustion engines are also reported. The whole set of comparisons with experimental data obtained in a wide range of conditions not only validate the reduced models of specific transportation fuels but also the complete kinetic scheme POLIMI_1404.  相似文献   

6.
污泥热解油中类汽油组分组成和燃料特性分析   总被引:4,自引:0,他引:4  
采用蒸馏工艺对污泥热解油进行加工,得到较轻的类汽油组分,利用气质联用对此部分进行化学成分分析,发现类汽油组分是由碳原子个数为6~13有机物组成的复杂混合物,其中含有烷烃24.32%、烯烃36.33%、芳烃22.96%、N、O有机物16.39%.将类汽油组分的燃料性质与车用汽油标准进行对比,发现除难闻气味和硫含量较高外,...  相似文献   

7.
张哲  宗保宁 《催化学报》2003,24(11):856-860
 采用X射线衍射、扫描电镜、X射线能量散射谱、红外光谱和核磁共振等多种物化方法对合成的ZSM-5(核)/AlPO4-5(壳)双结构分子筛进行了表征,证明这种材料具有以ZSM-5为核层、以AlPO4-5为壳层的双结构特征.考察了合成条件对ZSM-5(核)/AlPO4-5(壳)分子筛形貌的影响,发现ZSM-5分子筛的加入方式对产物的形貌有较大影响.重油裂化反应结果表明,ZSM-5(核)/AlPO4-5(壳)双结构分子筛的催化性能比ZSM-5和ZSM-5/AlPO4-5机械混合分子筛样品好,表现为原油转化率和低碳烯烃、汽油及柴油收率提高.  相似文献   

8.
Minty B  Ramsey ED  Davies I 《The Analyst》2000,125(12):2356-2363
A direct aqueous supercritical fluid extraction (SFE) system was developed which can be directly interfaced to an infrared spectrometer for the determination of oil in water. The technique is designed to provide an environmentally clean, automated alternative to established IR methods for oil in water analysis which require the use of restricted organic solvents. The SFE-FTIR method involves minimum sample handling stages, with on-line analysis of a 500 ml water sample being complete within 15 min. Method accuracy for determining water samples spiked with gasoline, white spirit, kerosene, diesel or engine oil was 81-100% with precision (RSD) ranging from 3 to 17%. An independent evaluation determined a 2 ppm limit of quantification for diesel in industrial effluents. The results of a comparative study involving an established IR method and the SFE-FTIR method indicate that oil levels calculated using an accepted equation which includes coefficients derived from reference hydrocarbon standards may result in significant errors. A new approach permitted the derivation of quantification coefficients for the SFE-FTIR analyses which provided improved results. In situations where the identity of the oil to be analysed is known, a rapid off-line SFE-FTIR system calibration procedure was developed and successfully applied to various oils. An optional in-line silica gel clean-up procedure incorporated within the SFE-FTIR system enables the same water sample to be analysed for total oil content including vegetable oils and selectively for petroleum oil content within a total of 20 min. At the end of an analysis the SFE system is cleaned using an in situ 3 min clean cycle.  相似文献   

9.
Near-infrared spectrometry with multivariate calibration has been widely used in the food and chemical industries for the determination of quality parameters. The use of fibre optics opens the possibility of using this technique for on-line analysis. With fuels such as gasoline and diesel, most of the parameters used for their characterization are measured using empirical and sometimes subjective tests. These tests might also require costly and complicated equipment as in the measurement of octane number, cetane number and paraffin, olefin, naphthene and aromatics content (PONA). Near-infrared spectrometry using fibre optics in combination with multivariate calibration was used for the determination of fuel quality parameters. The octane number of gasolines was measured. The sampling problems encountered when this method is implemented on-line were evaluated by monitoring the research and motor octane numbers in a gasoline line. Other applications, such as the determination of PONA in gasolines and the measurement of cetane number in diesel fuels, are discussed. In all instances the results obtained by the proposed technique agree with the values measured with conventional methods.  相似文献   

10.
Biodiesel and diesel-like have been obtained from soybean oil by transesterification and thermal cracking process, respectively. These biofuels were characterized as according to ANP standards by using specific ASTM methods. Ethanol, gasoline, and diesel were purchased from a gas station. Deacetylation degree of chitosan was determined by three distinct methods (conductimetry, FTIR and NMR), and the average degree was 78.95%. The chitosan microspheres were prepared from chitosan by split-coating and these spheres were crosslinked using glutaraldehyde. The surface area of microspheres was determined by BET method, and the surface area of crosslinked microspheres was 9.2 m2 g−1. The adsorption isotherms of cooper, nickel and zinc on microspheres of chitosan were determined in petroleum derivatives (gasoline and diesel oil), as well as in biofuels (alcohol, biodiesel and diesel-like). The adsorption order in all fuels was: Cu > Ni > Zn. The elution tests presented the following preconcentration degrees: >4.5 to ethanol, >4.4 to gasoline, >4.0 to diesel, >3.8 to biodiesel and >3.6 to diesel-like. The application of chitosan microspheres in the metal ions preconcentration showed the potential of this biopolymer to enrich fuel sample in order to be analyzed by flame atomic absorption spectrometry.  相似文献   

11.

The heat of combustion (HOC) of butanol/gasoline and butanol/diesel fuel blends was systematically determined in a Parr 6725/6772 heat-loss compensated semi-microcalorimeter under controlled temperature and pressure conditions. A set of blends containing 15 and 30% of butanol, in mass fraction, was tested, and the results were compared to those obtained for pure ethanol, pure gasoline, pure diesel, and Brazilian commercial gasoline. In view of the high volatility of samples, the use of gelatin capsules was necessary to avoid evaporation losses during the critical step of sampling. Results evidenced that despite a slight energy reduction observed for all blends, HOC values remained quite close to those measured for gasoline and diesel, even when considering blends with 30% of butanol in mass fraction, which reduction does not exceed 8.5%. Compared to ethanol, a HOC up to 14.7% higher was achieved for butanol. The present work confirms that in mass fractions up to 30%, butanol can be satisfactorily blended with gasoline and diesel without causing major impacts on the fuel energy density and, more than that, can offer energy advantage compared to ethanol.

  相似文献   

12.
In this review, we are reporting the catalytic reforming of liquid hydrocarbon fuels carried out in our research group, covering the catalytic reforming of iso-octane and toluene as surrogate of gasoline, gasoline fuel processor system and steam reforming of n-hexadecane and decahydronaphthalene, main constituents of diesel. The commercial ICI reforming catalyst is prone to be poisoned by sulfur contained in iso-octane. We investigated various supported transition metal formulations and developed Ni/Fe/MgO/Al2O3 (KIST-5) catalyst with prolonged catalytic stability (>760 h), higher activity and sulfur tolerance ability over commercial ICI and HT catalysts for ATR reaction of iso-octane. We found that the concentration of CO can be reduced to <1,800 ppm by the gasoline fuel processor system charged with KIST-5 reforming catalyst, commercial HTS catalyst and KIST Pt–Ni/CeO2 LTS catalyst. The addition of Rh metal to spc-Ni/MgAl catalyst as promoter was found to be very effective in inhibiting the deactivation of spc-Ni/MgAl catalyst by sintering of reduced Ni metal at high temperature during steam reforming of n-hexadecane. A 0.3 wt% Rh loading on spc-Ni/MgAl catalyst was optimized to have the best performance for steam reforming of n-hexadecane among the prepared catalysts. The addition of Rh to spc-Ni/MgAl catalyst also restricted the deactivation of the catalyst due to carbon formation at high reaction temperature. In view point of prolonged stability and higher activity, these developed reforming catalysts have a good scope in the reforming process of gasoline and diesel for hydrogen station and fuel processor system applications.  相似文献   

13.
界面膜引发的乳化燃油燃烧中的振荡反应   总被引:1,自引:1,他引:0  
有关小分子醇、H。和CO等易燃气体在铂催化下的高温燃烧的温度振荡及以表面活性剂为关键组分的液膜扩散振荡已有报道"-'-.但由界面膜作用而产生的乳化燃油燃烧中的振荡反应尚无其它可操作的原始研究文献,只是在前文['j中提及过出现该现象.为了解乳化燃油燃烧过程中界面变化及其对燃烧的作用,通过静态燃烧实验配方的调节及变换以改变燃烧界面的情况.实验发现,在乳化燃油中加入一般的食用豆油,并使之水解出长链竣酸盐,则富集在燃烧界面上的长链竣酸盐所形成的界面膜对燃烧的自阻抑作用便会产生明显的振荡反应,形成火焰温度与高…  相似文献   

14.
Automotive fuels require strict quality control to assure best energy use with minimal environmental pollution. Fuels can be modified before consumption by inadequate transport, storage, and handling, as well as illegal adulteration. Continuous monitoring is of paramount importance to reduce such irregularities, thus requiring reliable analytical methods, which should be simple, fast, and minimize both reagent consumption and waste generation. The potential for in-situ monitoring is also highly desirable. Flow analysis plays an important role in this sense, by means of automated sample processing in closed systems, under highly reproducible conditions. In spite of this potential, application for routine fuel analysis is yet limited and wide dissemination is desirable. This review focuses on analytical approaches for in-line sample pretreatment and determination of organic and inorganic contaminants in automotive fuels by flow analysis. Applications in gasoline, diesel oil, biodiesel, and ethanol fuels are critically discussed.  相似文献   

15.
燃油燃料含硫化合物形态分布剖析技术研究进展   总被引:1,自引:0,他引:1  
介绍了目前用于燃油、燃料(如汽油、柴油、煤油、喷气燃料)的硫化物形态分布剖析的多种分析技术,包括电化学方法和气相色谱与多种选择性检测器联用的方法(如GC - FPD、GC - AED、GC - SCD、GC - MS等),并对各种分析技术的研究现状进行了概述.  相似文献   

16.
Vegetable oil derived fuels for diesel engines are becoming important as alternative to petroleum diesel fuels due to their environmental friendliness and availability. Ignition quality in compression ignition (CI) engines is influenced by thermal characteristics and fuel properties. In this study, the effects of vegetable oil transesterification and vegetable oil–1-butanol-diesel blends on fuel properties, cetane number (CN) and thermal characteristics were experimentally investigated. Methyl esters (biodiesel) and 10% vegetable oil–10% 1-butanol–80% diesel blends were prepared from croton oil (CRO), coconut oil (COO) and jatropha oil (JAO). CN was measured in a CFR F-5 engine, and a thermogravimetric analysis (TG), as well as the determination of fuel properties of vegetable oils, biodiesels and blends was carried out. It can be observed for vegetable oils that they possess low volatility characteristics, low CN and high viscosity different from those of biodiesels, blends and diesel fuel. It was observed that biodiesels and blends exhibit similarities with diesel in the fuel characteristics, CN and TG curves.  相似文献   

17.
应用紫外分光光谱技术建立了快速测定原料油中芳香烃含量的方法。分别以色谱分离法提纯的蜡油、柴油芳香烃组分为标准物,绘制标准曲线。实验表明蜡油和柴油中芳香烃的含量与吸光度具有良好的线性关系(相关系数r2分别为0.999 73,0.999 44),蜡油和柴油中芳烃的加标回收率分别为96.83%,98.97%。蜡油和柴油中芳烃测定结果的相对标准偏差分别为0.32%~0.98%,0.89%~1.52%(n=6)。该方法进行原料油可磺化有效组分的检测快速可靠,能更好地应用于实际生产。  相似文献   

18.
The obtained heats of combustion were 46.65 ± 0.20; 38.09 ± 0.31; 39.67 ± 0.22; 41.88 ± 0.31; 37.86 ± 0.46; 39.89 ± 0.09; 41.28 ± 0.31 MJ/kg for diesel, transesterified soybean oil, pyrolysed soybean oil and crude soybean oil, transesterified palm tree oil (Elaeis sp.), pyrolysed palm tree oil, crude palm tree oil, respectively. The results show the heats of combustion of biofuels are approximately 17% smaller than traditional diesel. The data also show the heats of combustion depend on the methodology used for the biofuel production. Addition of biofuels to traditional diesel fuel results in a linear decrease of the heat of combustion with the amount of the alternative fuel added to the diesel. However, for blends with 5% biofuels, which is the limit demanded by Brazilian legislation, no significant decrease of the heat of combustion of the commercial diesel was observed.  相似文献   

19.
Reforming liquid fuels into hydrogen and light hydrocarbons is desirable for improving the combustion characteristics of the fuels and the production of reducing agents for applications such as the removal of nitrogen oxides. In this study, diesel, kerosene, gasoline and methane were reformed by spark discharges between needle and plate electrodes at room temperature and atmospheric pressure. The gaseous products from liquid fuels comprised 65–70 % hydrogen and 30–35 % light hydrocarbons having two carbon atoms per molecule (i.e., C2s), or three carbon atoms per molecule (i.e., C3s). The product gases were 90 % hydrogen and 10 % C2s in the case of methane reforming. The energy efficiency for the production of gaseous products was highest in the case of gasoline at 3.8 mol/kWh, followed by kerosene, diesel and methane at 3.2, 3.0, and 2.4 mol/kWh, respectively. These results were found to be comparable to those reported by others for the reforming of pure hydrocarbons by plasmas in liquids. The liquid fuels turned black due to the formation of carbonaceous products, some of which could be filtered out as solid carbon particles, but others remained dissolved and imparted color to the treated liquid.  相似文献   

20.
A novel composite oil‐absorbent microsphere poly(stearyl methacrylate‐co‐butyl acrylate) (PSB)‐SiO2 was prepared by introducing hydrophobic nano‐silica Aerosil R812 into the suspension polymerization system of stearyl methacrylate and butyl acrylate and was characterized by Fourier transform infrared and scanning electron microscopy energy‐dispersive spectrometer. PSB‐SiO2 has a loose network structure and exhibits remarkably fast oil absorption speed in relatively high saturated oil absorbency. Besides, PSB‐SiO2 has good oil retention and reusability. Moreover, the saturated oil absorbencies of PSB‐SiO2 toward toluene, gasoline, and diesel over water are roughly equivalent to that in pure oil. Owing to its excellent oil absorption performances, PSB‐SiO2 will find applications in removing oil spills and organic pollutants over water. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号