首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
NMR field-cycling measurements of the deuteron spin relaxation dispersion T1(v) for the fully deuteriated nematic liquid crystal 4-n-pentyl-4'-cyanobiphenyl (5CB-d19) over a broader Larmor frequency range (v≈10 kHz to 30 MHz) than reported so far in the literature basically confirm the magnetic relaxation mechanisms previously observed by frequency dependent proton spin studies of various nematogenic molecules, namely collective nematic modes of the director field in the kilohertz regime, and anisotropic reorientations of individual molecules (mainly self-diffusion for the protons and mainly rotations about the long axis for the deuterons) in the megahertz range. Within the experimental error limits such a model allows a self-consistent interpretation of the available deuteron and proton T1(v) results for deuteriated or protonated 5CB, respectively. In particular, the magnitudes of the measured order fluctuation contributions are in approximate accordance, i.e. within a factor of less than two, with theoretical estimates from NMR line splittings and the relevant material parameters. More exact and more extensive deuteron studies are needed to locate the origin of the observed minor inconsistency.  相似文献   

2.
The proton spin–lattice relaxation time (T1) dispersion was studied under simultaneous sonication in the nematic phase of 5CB. It appears that metastable ordered states subject to a memory effect can be induced by the combined action of an amplitude-modulated ultrasonication and a pulsed magnetic field. We argue that the acoustic amplitude modulation adds instability to the nematic phase through director order fluctuation enhancement. Different manipulated states of the director were unambiguously identified by the Larmor frequency dispersion of T1. The field-cycling NMR technique was used for T1 measurements.  相似文献   

3.
Powder X-ray diffraction, 119Sn NMR spectra, and 1H NMR spin–lattice relaxation times, T1, were measured for (CH3)nNH4−nSnCl3 (n=1–4). From the Rietveld analysis, it is shown that all four compounds crystallize into deformed perovskite-type structures at room temperature. The temperature dependence of 1H T1 was analyzed in terms of the CH3 reorientation and other motions of the whole cation. Except for the phase transition in CH3NH3SnCl3, which is from monoclinic to rhombohedral at 331 K, 1H T1 was continuously changed at other phase transitions in this compound as well as in the n=2–4 compounds, suggesting that the transitions are not caused by the change of the motional state of the cation but by an instability of the [SnCl3]nn perovskite lattice.  相似文献   

4.
Equations are presented for the spectral and orientational distribution of unexcited dye molecules in the field of an intense giant laser pulse. The solute dye molecules are linear oscillators that may be broadened either homogeneously or inhomogeneously, and may reorient by sudden jumps over large angles or by small angular steps (brownian rotational motion). The equations are employed to analyze the intensity dependence of fluorescence polarization observed by Mourou and Denariez-Roberge for the system cryptocyanine-glycerin. Their data are consistent with an excited-state deactivation time T1 = 0.4 ± 1.0 ns and a rotational diffusion constant D = 20/T1 = 5.0 × 109 s−1  相似文献   

5.
The e.m.f. of the galvanic cells Pt,C,Te(l),NiTeO3,NiO/15 YSZ/O2 (Po2 = 0.21 atm),Pt and Pt,C,NiTeO3,Ni3TeO6,NiO/15 YSZ/O2 (Po2 = 0.21 atm),Pt (where 15 YSZ=15 mass% yttria-stabilized zirconia) was measured over the ranges 833–1104 K and 624–964 K respectively, and could be represented by the least-squares expressions E(1)±1.48 (mV) = 888.72 − 0.504277 (K) and E(II) ±4.21 (mV) = 895.26 − 0.81543T (K).

After correcting for the standard state of oxygen in the air reference electrode, and by combining with the standard Gibbs energies of formation of NiO and TeO2 from the literature, the following expressions could be derived for the ΔG°f of NiTeO3 and Ni3TeO6: ΔGf°(NiTeO3) ± 2.03 (kJ mol−1) = −577.30 + 0.26692T (K) and ΔG°f(Ni3TeO6)±2.54 (kJ mol−1) = −1218.66 + 0.58837T (K).  相似文献   


6.
The formation and behaviour of cyclohexane and cyclohexane-d12 nanocrystals in mesoporous solids of well-defined dimensional constraints are studied by 1H and 2H NMR. The NMR line widths, spin–spin relaxation times (T2), spin–lattice relaxation times (T1) and diffusivities (D) were measured as a function of temperature, and the results are discussed with reference to the values obtained for the bulk materials. The confined solids exhibit substantial changes in the phase behaviour and molecular dynamics. Thus, the line-shape measurements reveal a two-phase system consisting of a highly mobile component at the surface of the pore and a plastically crystalline phase in the centre of the pore. The liquid-like surface layer in the mesopores is observable well below the reduced transition temperature of the confined cyclohexane. However, the T2 and diffusion measurements show that the mobile phase also embraces a minor component attributed to non-frozen liquid in pockets or offshoots.  相似文献   

7.
Calculations with Hartree—Fock electron densities for the rare gas atoms He through Xe show that the gradient expansion for the kinetic energy functional, T[] = T0[] + T2[] + T4[] + … = ∫t() dτ, approximates the kinetic energy by averaging over the shell structure present in the true local kinetic energy density, t(), and that the accuracy of the gradient expansion improves with increasing atomic number. Components of t(), t0(), t2() and t4(), are exhibited and discussed. The defined function t() is everywhere positive.  相似文献   

8.
The spectral densities of motion were determined by deuterium N.M.R. relaxation measurements in the nematic, smectic A and smectic C phases of 4-n-pentyloxybenzylidene-d1-4'-heptylaniline and 4-n-pentyloxybenzylidene-4'-heptylaniline-2,3,5,6-d4. By examining two atomic sites on a 5O.7 molecule, we were able to gain information on the reorientation motion and internal rotation of the aniline ring. It was also found that director fluctuations make some contribution to the spectral density J1 (ω). We use the superimposed rotations model to account for the internal ring motion and the small step rotational diffusion model for the molecular reorientation. The derived rotational diffusion constants for the spinning and tumbling motions appear to give physically plausible activation energies in the mesophases of 5O.7.  相似文献   

9.
Proton spin-lattice relaxation studies were carried out in the SA and S*C phases of the liquid crystal CI IPNOC using both conventional and fast field cycling NMR techniques. T1 dispersion curves were obtained at two different temperatures for each mesophase covering frequencies from 102 to 3 × 108 Hz. In both mesophases the T1 data can be described assuming the presence of three different relaxation mechanisms, namely local molecular rotations, molecular self-diffusion and collective motions. The self-diffusion constant D1 was evaluated for several temperatures and the activation energy associated with the diffusion process was obtained. The expected contribution of the soft-mode for the spin-lattice relaxation could not be separated from the contribution of other collective motions. The correlation times associated with the rotations around the molecular long axis and with the fluctuations of this axis were evaluated for both the SA and the S*C phases.  相似文献   

10.
The dielectric permittivity tensor components, εII and ε, in the nematic phase of 6CB (4-n-hexyl-4'-cyanobiphenyl) were measured in the pressure range 0.1-130 MPa and the temperature range 12-58°C. The dielectric anisotropy, Δε(p, V, T) = εII - ε, was analysed in isothermal, isobaric and isochoric conditions taking into account the pVT data and the well known Maier and Meier equation. On that basis the nematic order parameter S(p, V, T) was determined. This was used to calculate the parameter Γ relating the interaction potential with the volume (density). Its value Γ = 4.1 agrees very well with other estimates.  相似文献   

11.
The effect of significant decrease of water absorptivity for the intense picosecond laser radiation at λ=2.79 and 2.94 μm being near the centre of the OH stretching mode absorption band was discovered. In the case of pure water a thermal mechanism dominated: a very fast temperature rise led to weakening of H-bonds and consequently to the absorption band shift towards higher frequencies. As a result a considerable (up to 10 times) decrease in the optical density at the laser frequency was obtained. In the second case of HDO diluted in D2O the temperature effects were eliminated and a pure spectroscopic saturation of the v = 0 to v =1 vibrational transition was displayed. The value of the saturation intensity as high as Is=2.5 × 1011W cm−2 in this case gives the value of energy relaxation time of the OH excited state to be T1=0.6 ps. The width of the homogeneously broadened component of the fundamental OH band in HDO is evaluated to be greater than or equal to 50 cm−1.  相似文献   

12.
J. Zio&#x  o  J. Chrape&#x    J. Jad   yn 《Liquid crystals》1990,7(4):583-587
Results are reported for measurements of Δε/E2 for 6-DBT and 7-DBT (5-trans-n-alkyl-2(4'-isothiocyanianophenylo)-1,3-dioxane, n = 6, 7) in the isotropic phase, in the vicinity of TSA1, and for 6-DBT solutions in dioxane over a broad range of temperatures. In the immediate vicinity of TSA1 divcrgence from the Landau-de Gennes model was observed. From measurements made in solutions of 6-DBT in dioxane it was concluded that the antiparallel orientation of dipoles is preferred.  相似文献   

13.
A Raman scattering study of the v3 vibration—rotation band in methyl iodide as a function of temperature and dilution (in cyclohexane) has been performed. All the data satisfy the second moment criterion. Detailed information about rotational correlation function, angular velocity correlation function, various correlation times and mean-square torque has been obtained. The correlation function, in the pure liquid, decays slowly with decrease in temperature whereas it decays faster with decreasing concentration in cyclohexane. It has been shown, from a consideration of the second moment as a function of concentration, that the contribution of collision-induced scattering to the v3 band of methyl iodide is negligible. Applicability of a simple “damped librator model”, with a view to understanding certain aspects of the rotational motion in methyl iodide, is discussed.  相似文献   

14.
Raman and infrared spectra of propylgermane, CH3CH2CH2GeH3, and its Ge-deuterated analog, CH3CH2CH2GeD3, were investigated in their gaseous, liquid and solid states. The normal coordinate treatment was carried out by density functional theory (DFT) calculation, using B3LYP/6-31G* and 6-311++G** basis sets, and the corresponding fundamental vibrations were assigned. The trans (T) and gauche (G) forms around the central C–C bond coexisted in the gaseous and liquid states and only the T form existed in the solid state. From the temperature dependent measurements of the Raman spectra in the liquid state, the enthalpy difference was found to be ΔH(TG)=−0.36±0.02 kcalmol−1 with the T form being more stable. The energy differences between the isomers obtained by DFT calculations were ΔE(TG)=−0.46 kcalmol−1 and ΔE(TG)=−0.87 kcalmol−1 by the 6-31G* basis set and 6-311++G** basis set, respectively.  相似文献   

15.
In the present study, an infrared (IR) high temperature cell was used, in combination with a Fourier transform infrared (FTIR) spectrometer for the development of an alternative temperature-programmed desorption (TPD) procedure. Three different adsorbates, i.e., benzene, toluene and ethylbenzene were non-isothermally desorbed from two zeolites H-ZSM-5 and H-Beta. The FTIR-TPD profiles were fitted with the help of the complementary error function. The fitting process was carried out with the help of a computer program which allows us to calculate two parameters, the temperature, T0 (K) and the temperature range ΔT (K), which, in conjunction with the complementary error function, characterizes the FTIR-TPD profile. Was found that the parameter T0 is linked with the adsorption energy of the adsorbate in the zeolite and the parameter ΔT was correlated with the transport process of the desorbed molecules inside the zeolites during the desorption process and with the presence of more than one type of adsorption sites. In conclusion, was confirmed that the FTIR-TPD methodology is appropriate for in situ observation of adsorbed molecules on zeolites, and that this technique makes available information concerning the adsorbed state of guest molecules in non-isothermal desorption.  相似文献   

16.
A tandem quadrupole mass spectrometer is used to study the charge transfer reactions NH3+ + NO and NO+ + NH3 over a collision energy range 1.5–13 eV. The vibrational state of the reagent ions is selected by resonance-enhanced multiphoton ionization. For the 0.9 eV exothermic process NH3+ + NO → NH3 + NO+ excitation of the v2 umbrella bending mode (v2 = 0–12) causes no marked change in the charge transfer cross section, while in the reverse process NO+ + NH3 → NO + NH3+ excitation of the NO+ vibration (v = 0–6) strongly enhanced the charge transfer cross section.  相似文献   

17.
Induced ferroelectric S*C phases are formed by non-chiral SC host phases doped with chiral dipolar guest molecules. In those mixtures the spontaneous polarization Ps and the tilt angle Θ has been investigated as a function of the mole fraction xG of the chiral dopant. In most cases the reduced polarization P0 = PS/ sin Θ has been found to depend linearly on xG. The polarization power which is defined by δP=(∂P0/∂xGT is discussed in terms of the molecular structure of the chiral dopants. There are systems in which P0(xG) deviates positively from linearity. This behaviour can be understood by considering a local field correction to P0. By assuming a local field of Lorentz type a theoretical relation for P0(xG) has been derived which explains the experimental results. The effect of a local field is considerable if the transverse dipole moment and the polarizability of the chiral dopant are large.  相似文献   

18.
FTIR spectra of the four isotopically substituted 1:1 complexes of acetonitrile and boron trifluoride were recorded in Ar, N2 and Xe matrices. In Ar, previously unreported three vibrational modes of the complex were clearly observed. Several significant vibrational bands were also observed in N2 and Xe. The observed frequency shifts on complexation, Δν, were qualitatively in good agreement with the computational results, which were calculated at the B3LYP/6-311++G(d,p) level using the optimized geometry of the C3v eclipsed conformation. The observed magnitudes of Δν for most of the complex bands were larger than the calculated values. The BF3 symmetric deformation mode is an exception. The observed frequency shits for this mode were smaller than the calculated values, especially in N2. This suggests that even an inert matrix can significantly affect the vibrational spectrum of the complex.  相似文献   

19.
The pressure-temperature phase diagram of 4'-tetradecyl-4-cyanobiphenyl (14CB) up to 220 MPa (2.2 kbar) and between 320-400 K was established using DTA. The temperature range of the smectic A (SmA) phase slightly increases with pressure. The layer spacing d at 1 atm was determined as a function of temperature using X-ray diffraction. It was related to the molecular length l by the ratio d/l ~ 1.4. The dielectric relaxation measurements in the isotropic and smectic A d phases of 14CB at 1 atm were performed in the frequency range 10 kHz-3 GHz. Contributions from both principal rotational motions, i.e. around the short and long molecular axes, were separated. The relaxation measurements under high pressure in the SmA phase covered the low frequency process. The longitudinal relaxation time τl , characterizing the molecular reorientations around the short axis, was analysed with respect to the pressure and temperature dependences, giving activation volumes, Δ# V = RT ( ∂ln τl / ∂p ) T , and activation enthalpies, Δ# H = RT ( ∂ln τl / ∂T -1 ) p , respectively. Surprisingly, all the activation quantities characterizing the rotational motions of 14CB molecules under different conditions are nearly the same as those determined recently for the much shorter homologue, 8CB. This indicates that the 14CB molecule is in fact relatively short due to conformational motions of the alkyl tail.  相似文献   

20.
The v3 mode of CH3F was excited by irradiation with a TEA CO2 laser pulse, and the time-resolved emission spectra of the v3 overtone and the 3 μ;m region were observed. The results indicate that the population of the v4 level behaves kinetically in the same manner as that of 2v3 or 3v3. This suggests an efficient energy transfer between these levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号