首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Decheng Wan 《PAMM》2007,7(1):2150039-2150040
Numerical simulations of flow-induced rotation of wing by multigrid fictitious boundary and grid deformation methods are presented. The flow is computed by a special ALE formulation with a multigrid finite element solver. The solid wing is allowed to move freely through the computational mesh which is adaptively aligned by a special mesh deformation method. The advantage of this approach is that no expensive remeshing has to be performed. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Various types of partitions are a common feature of lifting surfaces. These partitions can take the form of stiffening ribs, deflectors for preventing secondary flows or flow separation, etc. The presence of partitions has a marked effect on the character of flow and on the values of the aerodynamic parameters. Flow past such wings cannot be computed in the general case. Wings of a special type are amenable to simple solution, however, and this will be considered below. One special case of interaction between a partition and an infinite wing is also considered in [1].  相似文献   

3.
Transonic condensing flow is an interesting phenomena because of the large change in temperature over a small area. This drop in temperature allows the moist air to condense. It is the purpose of this paper to examine the effect of sweep on condensing flow. The geometry of the wing model starts with NACA‐0014 at the wall and reduces to a NACA‐0010 at the tip. The span of the wing is 2.5 times the maximum chord length. The effect of sweep is examined by comparing a model wing with a sweep angle of 11.3 with a straight trailing edge that has no thickness and then a straight leading edge with a 11.3 trailing edge sweep. The free stream Mach number is 0.8 and angle of attack is 0. A 2‐D calculation shows that the NACA‐0014 and NACA‐0010 have a region of supersonic flow but due to the effect of sweep the sonic line does not extend to the tip. This change of the supersonic region influences the area of condensation on the wing. The swept wing has a lower total drag coefficient for the adiabatic and all condensation cases compared to the straight leading edge wing and second for the each wing the trend of increasing drag with humidity is shown.  相似文献   

4.
Exact solutions are constructed for two-dimensional inviscid potential flow over a wing with a free line vortex standing over the wing. The loci of positions of the free vortex are found, and the lift is calculated. It is found that the lift on the wing can be significantly increased by the free vortex.  相似文献   

5.
The problem of reducing the drag of a wing at a specified lift in a supersonic flow is investigated. A solution for a delta wing is obtained in a simplified formulation of the optimization problem and a theoretical analysis. It is shown that the optimal conical wing is formed by elements of elliptical cones and planes. Numerical modelling of the flow of a non-viscous non-heat-conducting gas past the wing is performed, and the results of the theoretical analysis and direct optimization are compared. ©2012  相似文献   

6.
This paper concerns a determination procedure for conformal mapping of a wing through a finite element computation of potential function associated with the flow of 2-dimensional perfect fluid around the given wing section. Through our numerical procedure a family of mappings is obtained in the forms of finite Laurent series for an initial wing section input. Each member of the family describes a wing section located in a neighboring domain of the input one. Some of them could be expected as modified versions of the original wing section input, although they could not recover completely it.Inputting the shape of wing section has ambiguity in practical cases of wing sections such as the NACA23012 wing section. We would like to postulate that our identification procedure should be employed in the determination process of numerical profiles of the wing section considered, since identified ones are significantly easier in numerical processing than the original input shape.  相似文献   

7.
Uniform steady potential flow past a wing aligned at a small angle to the flow direction is considered. The standard approach is to model this by a vortex sheet, approximated by a finite distribution of horseshoe vortices. In the limit as the span of the horseshoe vortices tends to zero, an integral distribution of infinitesimal horseshoe vortices over the vortex sheet is obtained. The contribution to the force on the wing due to the presence of one of the infinitesimal horseshoe vortices in the distribution is focused upon. Most of the algebra in the force calculation is evaluated using Maple software and is given in the appendices. As in the two previous papers by the authors on wing theory in Euler flow [E Chadwick, A slender-wing theory in potential flow, Proc. R. Soc. A461 (2005) 415–432, and E Chadwick and A Hatam, The physical interpretation of the lift discrepancy in Lanchester-Prandtl lifting wing theory for Euler flow, leading to the proposal of an alternative model in Oseen flow, Proc. R. Soc. A463 (2007) 2257–2275], it is shown that the normal force is half that expected. In this further note, in addition it is demonstrated that the axial force is infinite. The implications and reasons for these results are discussed.  相似文献   

8.
A direct optimization method is used to determine the form of the wing which enables the aerodynamic performance to be improved for a given lift in the supersonic flow of ideal gas. The flow around the wing and its characteristics are calculated within the framework of a model based on Euler's equations. On the basis of a local analysis of the load distribution on the wing, a method is proposed for choosing the system of geometric parameters which ensures rapid convergence to the optimum. It is shown that one of the parameters of the system (the angle of rotation of the wing panel relative to the central chord) has a very slight influence on the aerodynamic characteristics of the wing.  相似文献   

9.
The Galerkin method with discontinuous basis functions is adapted for solving the Euler and Navier-Stokes equations on unstructured hexahedral grids. A hybrid multigrid algorithm involving the finite element and grid stages is used as an iterative solution method. Numerical results of calculating the sphere inviscid flow, viscous flow in a bent pipe, and turbulent flow past a wing are presented. The numerical results and the computational cost are compared with those obtained using the finite volume method.  相似文献   

10.
Exact free streamline solutions are found for two dimensional inviscid incompressible flow past a single and a multiple flap wing using a hodograph method. It is shown that solutions do not exist for arbitrary shapes, but that a geometrical constraint must be satisfied between the shape of the wing and the angle of attack. High lift coefficients are obtained for both cases. These solutions model the flow situation for a wing claimed in the past to give high lift at low speed.  相似文献   

11.
Summary The force on a wing of a cascade can be divided in the two components lift and drag like the force on a single wing. The magnitude and direction of the lift component are calculated. The change of the flow direction is caused not only by the lift but also by the drag. Approximately the flow can be calculated as the field of vortices with a circulation corresponding to cascade wings without drag.   相似文献   

12.
Many aquatic species such as dolphins and whales have fins, which can be modeled as swept wings. Some of these fins, such as the dorsal fin of a dolphin, are semi-rigid and therefore can be modeled as a rigid swept wing with a compliant surface. An understanding of the hydrodynamics of the flow past swept compliant surfaces is of great interest for understanding potential drag reduction mechanisms, especially since swept wings are widely used in hydrodynamic and aerodynamic design. In this paper, the flow past a swept wing with a compliant surface is modeled by an attachment-line boundary layer flow, which is an exact similarity solution of the Navier–Stokes equations, flowing past a compliant surface modeled as an elastic plate. The hydrodynamic stability of the coupled problem is studied using a new numerical framework based on exterior algebra. The basic instability of the attachment line boundary layer on a rigid surface is a traveling wave instability that propagates along the attachment line, and numerical results show that the compliance results in a substantial reduction in the instability region. Moreover, the results show that, although the flow-field is three-dimensional, the qualitative nature of the instability suppression is very similar to the qualitative reduction of instability of the two-dimensional Tollmien–Schlichting modes in the classical boundary-layer flow past a compliant surface.  相似文献   

13.
This paper presents the principal results of a theoretical investigation of the secondary flow and the related instability performed in the laminar incompressible boundary layer on an infinite uniform yawed solid cylinder with Schubauer’s ellipse of axial ratio 2·96:1 as the section normal to the leading edge. The secondary flow profiles and the value of the instability criterion are obtained at different points of the wing section and for various angles of sweepback. It is found that in favourable pressure gradients and at pressure minimum, the secondary flow profiles have negative values. In regions of adverse pressure gradients after the pressure minimum the secondary flow changes sign from negative to positive values and have points of inflexion. The change of sign starts from the surface and extends to the edge of the boundary layer downstream. At some points in adverse pressure gradients the secondary flow profiles have double points of inflexion and values of both signs simultaneously. It is found that an adverse pressure gradient produces more powerful secondary flow than a favourable pressure gradient of the same strength. It is also found that the values of the instability criterion increase with the increasing sweepback whether the pressure gradient is favourable or adverse. At every point of the wing section, there are two values of the criterion for a given sweepback. The effect of adverse pressure gradient on the variation of the criterion is much more pronounced than that of a favourable pressure gradient. It is also seen that the flow is intermittently laminar and turbulent for low values of the chordwise free stream Reynolds number and for low values of sweepback and consists of an irregular sequence of laminar and turbulent regions.  相似文献   

14.
The paper develops and implements a highly applicable framework for the computation of coupled aerostructural design optimization. The multidisciplinary aerostructural design optimization is carried out and validated for a tested wing and can be easily extended to complex and practical design problems. To make the framework practical, the study utilizes a high-fidelity fluid/structure interface and robust optimization algorithms for an accurate determination of the design with the best performance. The aerodynamic and structural performance measures, including the lift coefficient, the drag coefficient, Von-Mises stress and the weight of wing, are precisely computed through the static aeroelastic analyses of various candidate wings. Based on these calculated performance, the design system can be approximated by using a Kriging interpolative model. To improve the design evenly for aerodynamic and structure performance, an automatic design method that determines appropriate weighting factors is developed. Multidisciplinary aerostructural design is, therefore, desirable and practical. The authors acknowledge the support of a Korea Research Foundation Grant funded by the Korean Government and the second stage of Brain Korea 21st project.  相似文献   

15.
The aerospace industry is increasingly relying on advanced numerical flow simulation tools in the early aircraft design phase. Today's flow solvers, which are based on the solution of the compressible Euler and Navier-Stokes equations, are able to predict aerodynamic behaviour of aircraft components under different flow conditions quite well [1]. Within the next few years numerical shape optimization will play a strategic role for future aircraft design. It offers the possibility of designing or improving aircraft components with respect to a pre-specified figure of merit, subject to geometrical and physical constraints. Here, aero-structural analysis is necessary to reach physically meaningful optimum wing designs. The use of single disciplinary optimizations applied in sequence is not only inefficient but in some cases is known to lead to wrong, non-optimal designs [2]. Although multidisciplinary optimizations (MDO) are possible with classical approaches for sensitivity evaluations by means of finite differences, these methods are extremely expensive in terms of calculation time, requiring the reiterated solution of the coupled problem for every design variable. However, adjoint approaches allow the evaluation of these sensitivities in an efficient way and lead to high accuracy. Firstly, we present the development and application of a continuous adjoint approach for single disciplinary aerodynamic shape design. This approach was previously developed at the German Aerospace Center (DLR) [3] and was the starting point for the extension to aero-structural wing designs. Secondly, we describe the adjoint approach and its implementation for the evaluation of the sensitivities for coupled aero-structure optimization problems [4] and its application to the drag reduction of the AMP wing by constant lift while taking into account the static deformation of this wing caused by the aerodynamic forces (see figures). Finally, we show the application of the coupled aero-structural adjoint approach for the Breguet formula of aircraft range, where in addition to the lift to drag ratio the weight of the AMP wing is taken into account (see figures). (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
在非惯性参考系下对昆虫振翅扰动的二维非定常流场进行了数值模拟,避免了计算中的移动边界困难,从而缩短了计算时间,模型具有3个自由度,可以模拟任意已知的翅的平面运动.通过模拟相对复杂的自然界昆虫的振翅运动,研究昆虫是如何控制飞行.计算结果表明,有2个参数可能被昆虫用来控制飞行:翅平动和转动间的相位差以及垂直于平均振翅平面方向的横向振幅.  相似文献   

17.
Long  Bingsong  Yi  Chao 《中国科学 数学(英文版)》2022,65(11):2271-2296
Science China Mathematics - We consider the problem of supersonic flow of a Chaplygin gas past a delta wing with a shock or a rarefaction wave attached to the leading edges. The flow under study is...  相似文献   

18.
This paper contains a theoretical investigation of the secondary flow instability in the incompressible boundary layer on an infinite yawed cylinder with chordwise section as Joukowski profile of 15 per cent. thickness at zero incidence and with homogeneous suction, the suction mass flow coefficient being equal to 0·2085. Values of the instability criterion are obtained at different points of the wing section and for various angles of sweepback. It is found that the values of the criterion increase with the increasing sweepback whether the pressure gradient is favourable or adverse. The effect of adverse pressure gradient on the variation of the criterion is more pronounced than that of a favourable pressure gradient. At some points in adverse pressure gradients, there are two values of the criterion for a given sweepback. It is also found that the flow is intermittently laminar and turbulent for low values of the chordwise free stream Reynolds number and consists of an irregular sequence of laminar and turbulent regions.  相似文献   

19.
This paper contains a theoretical investigation of the secondary flow in the laminar incompressible boundary layer on an infinite yawed cylinder with chordwise section as Joukowski profile of 15 per cent. thickness at zero incidence and with homogeneous suction, the suction mass flow coefficient being equal to 0·2085. The secondary flow profiles are obtained at different points of the wing section and for various angles of sweepback. It is found that in favourable pressure gradients and at pressure minimum, the secondary flow profiles have negative values. In regions of adverse pressure gradients after the pressure minimum the secondary flow changes sign from negative to positive values and have points of inflexion. The change of sign starts from the surface and extends to the edge of the boundary layer downstream. At some points in adverse pressure gradients the secondary flow profiles have double points of inflexion and values of both signs simultaneously. It is also found that an adverse pressure gradient produces more powerful secondary flow than a favourable pressure gradient of the same strength.  相似文献   

20.
A series expansion is obtained for the exponent n of the singularityof the solution of Laplace's equation for the flow near theapex of a plane delta wing when the angular sector occupiedby the wing is small. A further term is found in the expansiondue to Legendre when the wing is almost a half-plane, and thevalue of n is determined numerically for a range of intermediatevalues of the apex angle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号