首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Suppose that X is a complex Banach space with the norm ‖·‖ and n is a positive integer with dim Xn ⩾ 2. In this paper, we consider the generalized Roper-Suffridge extension operator $ \Phi _{n,\beta _2 ,\gamma _2 , \ldots ,\beta _{n + 1} ,\gamma _{n + 1} } (f) $ \Phi _{n,\beta _2 ,\gamma _2 , \ldots ,\beta _{n + 1} ,\gamma _{n + 1} } (f) on the domain $ \Omega _{p_1 ,p_2 , \ldots ,p_{n + 1} } $ \Omega _{p_1 ,p_2 , \ldots ,p_{n + 1} } defined by
$ \Phi _{n,\beta _2 ,\gamma _2 , \ldots ,\beta _{n + 1} ,\gamma _{n + 1} } (f)(x) = {*{20}c} {\sum\limits_{j = 1}^n {\left( {\frac{{f(x_1^* (x))}} {{x_1^* (x)}}} \right)} ^{\beta _j } (f'(x_1^* (x)))^{\gamma _j } x_1^* (x)x_j } \\ { + \left( {\frac{{f(x_1^* (x))}} {{x_1^* (x)}}} \right)^{\beta _{n + 1} } (f'(x_1^* (x)))^{\gamma _{n + 1} } \left( {x - \sum\limits_{j = 1}^n {x_1^* (x)x_j } } \right)} \\ $ \Phi _{n,\beta _2 ,\gamma _2 , \ldots ,\beta _{n + 1} ,\gamma _{n + 1} } (f)(x) = \begin{array}{*{20}c} {\sum\limits_{j = 1}^n {\left( {\frac{{f(x_1^* (x))}} {{x_1^* (x)}}} \right)} ^{\beta _j } (f'(x_1^* (x)))^{\gamma _j } x_1^* (x)x_j } \\ { + \left( {\frac{{f(x_1^* (x))}} {{x_1^* (x)}}} \right)^{\beta _{n + 1} } (f'(x_1^* (x)))^{\gamma _{n + 1} } \left( {x - \sum\limits_{j = 1}^n {x_1^* (x)x_j } } \right)} \\ \end{array}   相似文献   

2.
We consider a new Sobolev type function space called the space with multiweighted derivatives $ W_{p,\bar \alpha }^n $ W_{p,\bar \alpha }^n , where $ \bar \alpha $ \bar \alpha = (α 0, α 1,…, α n ), α i ∈ ℝ, i = 0, 1,…, n, and $ \left\| f \right\|W_{p,\bar \alpha }^n = \left\| {D_{\bar \alpha }^n f} \right\|_p + \sum\limits_{i = 0}^{n - 1} {\left| {D_{\bar \alpha }^i f(1)} \right|} $ \left\| f \right\|W_{p,\bar \alpha }^n = \left\| {D_{\bar \alpha }^n f} \right\|_p + \sum\limits_{i = 0}^{n - 1} {\left| {D_{\bar \alpha }^i f(1)} \right|} ,
$ D_{\bar \alpha }^0 f(t) = t^{\alpha _0 } f(t),D_{\bar \alpha }^i f(t) = t^{\alpha _i } \frac{d} {{dt}}D_{\bar \alpha }^{i - 1} f(t),i = 1,2,...,n $ D_{\bar \alpha }^0 f(t) = t^{\alpha _0 } f(t),D_{\bar \alpha }^i f(t) = t^{\alpha _i } \frac{d} {{dt}}D_{\bar \alpha }^{i - 1} f(t),i = 1,2,...,n   相似文献   

3.
Let λ be a real number such that 0 < λ < 1. We establish asymptotic formulas for the weighted real moments Σ nx R λ (n)(1 − n/x), where R(n) =$ \prod\nolimits_{\nu = 1}^k {p_\nu ^{\alpha _\nu - 1} } $ \prod\nolimits_{\nu = 1}^k {p_\nu ^{\alpha _\nu - 1} } is the Atanassov strong restrictive factor function and n =$ \prod\nolimits_{\nu = 1}^k {p_\nu ^{\alpha _\nu } } $ \prod\nolimits_{\nu = 1}^k {p_\nu ^{\alpha _\nu } } is the prime factorization of n.  相似文献   

4.
For x = (x 1, x 2, ..., x n ) ∈ ℝ+ n , the symmetric function ψ n (x, r) is defined by $\psi _n (x,r) = \psi _n \left( {x_1 ,x_2 , \cdots ,x_n ;r} \right) = \sum\limits_{1 \leqslant i_1 < i_2 \cdots < i_r \leqslant n} {\prod\limits_{j = 1}^r {\frac{{1 + x_{i_j } }} {{x_{i_j } }}} } ,$\psi _n (x,r) = \psi _n \left( {x_1 ,x_2 , \cdots ,x_n ;r} \right) = \sum\limits_{1 \leqslant i_1 < i_2 \cdots < i_r \leqslant n} {\prod\limits_{j = 1}^r {\frac{{1 + x_{i_j } }} {{x_{i_j } }}} } ,  相似文献   

5.
In a bounded domain O ⊂ ℝd with C 1,1 boundary a matrix elliptic second-order operator A D,ɛ with Dirichlet boundary condition is studied. The coefficients of this operator are periodic and depend on x/ɛ, where ɛ s 0 is a small parameter. The sharp-order error estimate $ \left\| {A_{D,\varepsilon }^{ - 1} - \left( {A_D^0 } \right)^{ - 1} } \right\|\left. {L_2 \to L_2 \leqslant C\varepsilon } \right| $ \left\| {A_{D,\varepsilon }^{ - 1} - \left( {A_D^0 } \right)^{ - 1} } \right\|\left. {L_2 \to L_2 \leqslant C\varepsilon } \right|   相似文献   

6.
We study the homogeneous non-Gaussian integral $ J_{n|r} (S) = \int {e^{ - S(x_1 , \ldots ,x_n )} } d^n x $ J_{n|r} (S) = \int {e^{ - S(x_1 , \ldots ,x_n )} } d^n x , where S(x1,…,xn) is a symmetric form of degree r in n variables. This integral is naturally invariant under SL(n) transformations and therefore depends only on the invariants of the form. For example, in the case of quadratic forms, it is equal to the (−1/2)th power of the determinant of the form. For higher-degree forms, the integral can be calculated in some cases using the so-called Ward identities, which are second-order linear differential equations. We describe the method for calculating the integral and present detailed calculations in the case where n = 2 and r = 5. It is interesting that the answer is a hypergeometric function of the invariants of the form.  相似文献   

7.
k-Self-correcting circuits of functional elements in the basis {x 1&x 2, $ \bar x $ \bar x } are considered. It is assumed that constant faults on outputs of functional elements are of the same type. Inverters are supposed to be reliable in service. The weight of each inverter is equal to 1. Conjunctors can be reliable in service, or not reliable. Each reliable conjunctor implements a conjunction of two variables and has a weight p > k + 2. Each unreliable conjunctor implements a conjunction in its correct state and implements a Boolean constant δ (δ ∈ {0, 1}) otherwise. Each unreliable conjunctor has the weight 1. It is stated that the complexity of realization of monotone threshold symmetric functions $ f_2^n \left( {x_1 ,...,x_n } \right) = \mathop \vee \limits_{1 \leqslant i < j \leqslant n} x_1 x_j ,n = 3,4 $ f_2^n \left( {x_1 ,...,x_n } \right) = \mathop \vee \limits_{1 \leqslant i < j \leqslant n} x_1 x_j ,n = 3,4 , ... by such circuits asymptotically equals (k + 3)n.  相似文献   

8.
Imaginary powers associated to the Laguerre differential operator $ L_\alpha = - \Delta + |x|^2 + \sum _{i = 1}^d \frac{1} {{x_i^2 }}(\alpha _i^2 - 1/4) $ L_\alpha = - \Delta + |x|^2 + \sum _{i = 1}^d \frac{1} {{x_i^2 }}(\alpha _i^2 - 1/4) are investigated. It is proved that for every multi-index α = (α1,...α d ) such that α i ≧ −1/2, α i ∉ (−1/2, 1/2), the imaginary powers $ \mathcal{L}_\alpha ^{ - i\gamma } ,\gamma \in \mathbb{R} $ \mathcal{L}_\alpha ^{ - i\gamma } ,\gamma \in \mathbb{R} , of a self-adjoint extension of L α, are Calderón-Zygmund operators. Consequently, mapping properties of $ \mathcal{L}_\alpha ^{ - i\gamma } $ \mathcal{L}_\alpha ^{ - i\gamma } follow by the general theory.  相似文献   

9.
Considering the positive d-dimensional lattice point Z + d (d ≥ 2) with partial ordering ≤, let {X k: kZ + d } be i.i.d. random variables taking values in a real separable Hilbert space (H, ‖ · ‖) with mean zero and covariance operator Σ, and set $ S_n = \sum\limits_{k \leqslant n} {X_k } $ S_n = \sum\limits_{k \leqslant n} {X_k } , nZ + d . Let σ i 2, i ≥ 1, be the eigenvalues of Σ arranged in the non-increasing order and taking into account the multiplicities. Let l be the dimension of the corresponding eigenspace, and denote the largest eigenvalue of Σ by σ 2. Let logx = ln(xe), x ≥ 0. This paper studies the convergence rates for $ \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}} P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt {2\left| n \right|\log \log \left| n \right|} } \right) $ \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}} P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt {2\left| n \right|\log \log \left| n \right|} } \right) . We show that when l ≥ 2 and b > −l/2, E[‖X2(log ‖X‖) d−2(log log ‖X‖) b+4] < ∞ implies $ \begin{gathered} \mathop {\lim }\limits_{\varepsilon \searrow \sqrt {d - 1} } (\varepsilon ^2 - d + 1)^{b + l/2} \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt 2 \left| n \right|\log \log \left| n \right|} \right)} \hfill \\ = \frac{{K(\Sigma )(d - 1)^{\frac{{l - 2}} {2}} \Gamma (b + l/2)}} {{\Gamma (l/2)(d - 1)!}} \hfill \\ \end{gathered} $ \begin{gathered} \mathop {\lim }\limits_{\varepsilon \searrow \sqrt {d - 1} } (\varepsilon ^2 - d + 1)^{b + l/2} \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt 2 \left| n \right|\log \log \left| n \right|} \right)} \hfill \\ = \frac{{K(\Sigma )(d - 1)^{\frac{{l - 2}} {2}} \Gamma (b + l/2)}} {{\Gamma (l/2)(d - 1)!}} \hfill \\ \end{gathered} , where Γ(·) is the Gamma function and $ \prod\limits_{i = l + 1}^\infty {((\sigma ^2 - \sigma _i^2 )/\sigma ^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } $ \prod\limits_{i = l + 1}^\infty {((\sigma ^2 - \sigma _i^2 )/\sigma ^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } .  相似文献   

10.
Let $ \mathbb{B} $ \mathbb{B} be the unit ball in ℂ n and let H($ \mathbb{B} $ \mathbb{B} ) be the space of all holomorphic functions on $ \mathbb{B} $ \mathbb{B} . We introduce the following integral-type operator on H($ \mathbb{B} $ \mathbb{B} ):
$ I_\phi ^g (f)(z) = \int\limits_0^1 {\operatorname{Re} f(\phi (tz))g(tz)\frac{{dt}} {t}} ,z \in \mathbb{B}, $ I_\phi ^g (f)(z) = \int\limits_0^1 {\operatorname{Re} f(\phi (tz))g(tz)\frac{{dt}} {t}} ,z \in \mathbb{B},   相似文献   

11.
Let K be a nonempty closed convex subset of a real Hilbert space H such that K ± KK, T: KH a k-strict pseudo-contraction for some 0 ⩽ k < 1 such that F(T) = {xK: x = Tx} ≠ $ \not 0 $ \not 0 . Consider the following iterative algorithm given by
$ \forall x_1 \in K,x_{n + 1} = \alpha _n \gamma f(x_n ) + \beta _n x_n + ((1 - \beta _n )I - \alpha _n A)P_K Sx_{n,} n \geqslant 1, $ \forall x_1 \in K,x_{n + 1} = \alpha _n \gamma f(x_n ) + \beta _n x_n + ((1 - \beta _n )I - \alpha _n A)P_K Sx_{n,} n \geqslant 1,   相似文献   

12.
Let function f(z) ≠ 0 be analytic in the unit disk and have sparse nonzero Taylor coefficients. Then the rate of decay of the function f as x → 1 − 0 depends on the rate of sparseness of its nonzero Taylor coefficients. In this paper, we consider the case f(z) = $ \sum\nolimits_{k = 0}^\infty {a_k z^{n_k } } $ \sum\nolimits_{k = 0}^\infty {a_k z^{n_k } } , where n k A 0(k + 2) p logb(k + 2).  相似文献   

13.
We investigate the dynamics of two extensive classes of recursive sequences:xn+1=c∑ k ∑xn-ioxn-i1…xn-i2j+f(xn-io,xn-i1,…,xn-i2k)j=0(i0,i1,…,i2j)∈A2j/c∑ k ∑xn-ioxn-i1…xn-i2j-1+c+f(xn-io,xn-i1,…,xn-i2k)j=1(i0,i1,…,i2j)∈A2j-1 and xn+1=c∑ k ∑xn-ioxn-i1…xn-i2j-1+c+f(xn-io,xn-i1,…,xn-i2k)j=1(i0,i1,…,i2j)∈A2j-1/c∑ k ∑xn-ioxn-i1…xn-i2j+f(xn-io,xn-i1,…,xn-i2k)j=0(i0,i1,…,i2j)∈A2j We prove that their unique positive equilibrium x = 1 is globally asymptotically stable.And a new access is presented to study the theory of recursive sequences.  相似文献   

14.
Let p be a prime, χ denote the Dirichlet character modulo p, f (x) = a 0 + a 1 x + ... + a k x k is a k-degree polynomial with integral coefficients such that (p, a 0, a 1, ..., a k ) = 1, for any integer m, we study the asymptotic property of
$ \sum\limits_{\chi \ne \chi _0 } {\left| {\sum\limits_{a = 1}^{p - 1} {\chi (a)e\left( {\frac{{f(a)}} {p}} \right)} } \right|^2 \left| {L(1,\chi )} \right|^{2m} } , $ \sum\limits_{\chi \ne \chi _0 } {\left| {\sum\limits_{a = 1}^{p - 1} {\chi (a)e\left( {\frac{{f(a)}} {p}} \right)} } \right|^2 \left| {L(1,\chi )} \right|^{2m} } ,   相似文献   

15.
For x = (x 1, x 2, …, x n ) ∈ (0, 1 ] n and r ∈ { 1, 2, … , n}, a symmetric function F n (x, r) is defined by the relation
Fn( x,r ) = Fn( x1,x2, ?, xn;r ) = ?1 \leqslant1 < i2 ?ir \leqslant n ?j = 1r \frac1 - xijxij , {F_n}\left( {x,r} \right) = {F_n}\left( {{x_1},{x_2}, \ldots, {x_n};r} \right) = \sum\limits_{1{ \leqslant_1} < {i_2} \ldots {i_r} \leqslant n} {\prod\limits_{j = 1}^r {\frac{{1 - {x_{{i_j}}}}}{{{x_{{i_j}}}}}} },  相似文献   

16.
We develop a Wold decomposition for the shift semigroup on the Hardy space $ \mathcal{H}^2 $ \mathcal{H}^2 of square summable Dirichlet series convergent in the half-plane $ \Re (s) > 1/2 $ \Re (s) > 1/2 . As an application we have that a shift invariant subspace of $ \mathcal{H}^2 $ \mathcal{H}^2 is unitarily equivalent to $ \mathcal{H}^2 $ \mathcal{H}^2 if and only if it has the form $ \phi \mathcal{H}^2 $ \phi \mathcal{H}^2 for some $ \mathcal{H}^2 $ \mathcal{H}^2 -inner function φ.  相似文献   

17.
LetK be a field, charK=0 andM n (K) the algebra ofn×n matrices overK. If λ=(λ1,…,λ m ) andμ=(μ 1,…,μ m ) are partitions ofn 2 let wherex 1,…,x n 2,y 1,…,y n 2 are noncommuting indeterminates andS n 2 is the symmetric group of degreen 2. The polynomialsF λ, μ , when evaluated inM n (K), take central values and we study the problem of classifying those partitions λ,μ for whichF λ, μ is a central polynomial (not a polynomial identity) forM n (K). We give a formula that allows us to evaluateF λ, μ inM(K) in general and we prove that if λ andμ are not both derived in a suitable way from the partition δ=(1, 3,…, 2n−3, 2n−1), thenF λ, μ is a polynomial identity forM n (K). As an application, we exhibit a new class of central polynomials forM n (K). In memory of Shimshon Amitsur Research supported by a grant from MURST of Italy.  相似文献   

18.
19.
Let f be a primitive positive integral binary quadratic form of discriminant −D, and r f (n) the number of representations of n by f up to automorphisms of f. We first improve the error term E(x) of $ \sum\limits_{n \leqq x} {r_f (n)^\beta } $ \sum\limits_{n \leqq x} {r_f (n)^\beta } for any positive integer β. Next, we give an estimate of ∫1 T |E(x)|2 x −3/2 dx when β = 1.  相似文献   

20.
Let $ \mathfrak{S} $ \mathfrak{S} be a locally compact semigroup, ω be a weight function on $ \mathfrak{S} $ \mathfrak{S} , and M a ($ \mathfrak{S} $ \mathfrak{S} , ω) be the weighted semigroup algebra of $ \mathfrak{S} $ \mathfrak{S} . Let L 0 ($ \mathfrak{S} $ \mathfrak{S} ; M a ($ \mathfrak{S} $ \mathfrak{S} , ω)) be the C*-algebra of all M a ($ \mathfrak{S} $ \mathfrak{S} , ω)-measurable functions g on $ \mathfrak{S} $ \mathfrak{S} such that g/ω vanishes at infinity. We introduce and study a strict topology β 1($ \mathfrak{S} $ \mathfrak{S} , ω) on M a ($ \mathfrak{S} $ \mathfrak{S} , ω) and show that the Banach space L 0 ($ \mathfrak{S} $ \mathfrak{S} ; M a ($ \mathfrak{S} $ \mathfrak{S} , ω)) can be identified with the dual of M a ($ \mathfrak{S} $ \mathfrak{S} , ω) endowed with β 1($ \mathfrak{S} $ \mathfrak{S} , ω). We finally investigate some properties of the locally convex topology β 1($ \mathfrak{S} $ \mathfrak{S} , ω) on M a ($ \mathfrak{S} $ \mathfrak{S} , ω).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号