首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Gas chromatography/combustion/isotope ratio mass spectrometry (GC-C-IRMS) is a highly sensitive approach which allows the analysis of the (13)C/(12)C and (15)N/(14)N isotope composition of amino acids in the range of natural abundance or in slightly (13)C- and (15)N-enriched samples. However, the accuracy of measurements remains a permanent challenge. Here we show the effect of the presence of slightly (15)N-enriched compounds in physiological samples on the accuracy and reproducibility of (15)N-abundances of amino acids within or between analytical runs. We spiked several individual amino acids with the respective (15)N-labelled isotopomer and measured the (15)N/(14)N ratios of other amino acids in the same sample or in the following analytical runs. Intra- and inter-run memory effects can be observed in (15)N/(14)N ratios of amino acids. Sample throughput is reduced when cleaning runs using standard mixtures are required to restore initial conditions after runs of samples with (15)N-enriched analytes. Possible reasons for the observed phenomenon and its implications for work in the lower (15)N-enrichment range (<0.5 APE) are discussed and include different aspects of gas chromatography, derivatisation, and hot catalytic metal surface effects. Results need to be interpreted with caution if complex physiological samples contain (15)N-enriched amino acids beyond 500‰ δ(15)N (~0.18 APE).  相似文献   

2.
The rising atmospheric CO(2) concentration, increasing temperature and changed patterns of precipitation currently expose terrestrial ecosystems to altered environmental conditions. This may affect belowground nutrient cycling through its intimate relationship with the belowground decomposers. Three climate change factors (elevated CO(2), increased temperature and drought) were investigated in a full factorial field experiment at a temperate heathland location. The combined effect of biotic and abiotic factors on nitrogen and carbon flows was traced in plant root → litter → microbe → detritivore/omnivore → predator food-web for one year after amendment with (15)N(13)C(2)-glycine. Isotope ratio mass spectrometry (IRMS) measurement of (15)N/(14)N and (13)C/(12)C in soil extracts and functional ecosystem compartments revealed that the recovery of (15)N sometimes decreased through the chain of consumption, with the largest amount of bioactive (15)N label pool accumulated in the microbial biomass. The elevated CO(2) concentration at the site for 2 years increased the biomass, the (15)N enrichment and the (15)N recovery in detritivores. This suggests that detritivore consumption was controlled by both the availability of the microbial biomass, a likely major food source, and the climatic factors. Furthermore, the natural abundance δ(13)C of enchytraeids was significantly altered in CO(2)-fumigated plots, showing that even small changes in δ(13)C-CO(2) can be used to detect transfer of carbon from primary producers to detritivores. We conclude that, in the short term, the climate change treatments affected soil organism activity, possibly with labile carbohydrate production controlling the microbial and detritivore biomass, with potential consequences for the decomposition of detritus and nutrient cycling. Hence, there appears to be a strong coupling of responses in carbon and nitrogen cycling at this temperate heath.  相似文献   

3.
In the development of a screening method for the determination of residues of mecoprop in soils involving coupled-column RPLC-UV (228 nm) the cleanup performance of a 5 μm GFF-II internal surface reversed phase (ISRP, Pinkerton) analytical column (50 × 4.6 mm I.D.) as a first column was investigated. In comparison to an analytical C18 column the ISRP column substantially improved the separation between acidic analyte and co-extracted humic substances. Under the selected coupled-column conditions soil extracts obtained after hydrolysis with an aqueous alkaline solution, acidifying and centrifugation could be analyzed directly allowing the determination of mecoprop in soils to a level of about 0.02 mg/kg. A rapid concentration step on a 100 mg C18 solid phase extraction (SPE) cartridge was adopted into the procedure providing a limit of detection (S/N = 3) of 0.01 mg/kg of mecoprop in soil. The method was validated by analyzing freshly spiked soil samples and samples with aged residues. In case of freshly spiked samples the overall recovery was 87% (n = 18, spiked level 0.02–8.0 mg/kg) with a repeatability of 6.8% and a reproducibility of 8.3%. No significant decrease of the recovery was observed for samples with aged residues (n = 15, spiked level 0.1 and 8.0 mg/kg) during a storage of 29 days in the refrigerator at about 4?°C; a storage of 67 days provided a mean recovery of 76% (n = 14, spiked level 8.0 mg/kg).  相似文献   

4.
In the development of a screening method for the determination of residues of mecoprop in soils involving coupled-column RPLC-UV (228 nm) the cleanup performance of a 5 μm GFF-II internal surface reversed phase (ISRP, Pinkerton) analytical column (50 × 4.6 mm I.D.) as a first column was investigated. In comparison to an analytical C18 column the ISRP column substantially improved the separation between acidic analyte and co-extracted humic substances. Under the selected coupled-column conditions soil extracts obtained after hydrolysis with an aqueous alkaline solution, acidifying and centrifugation could be analyzed directly allowing the determination of mecoprop in soils to a level of about 0.02 mg/kg. A rapid concentration step on a 100 mg C18 solid phase extraction (SPE) cartridge was adopted into the procedure providing a limit of detection (S/N = 3) of 0.01 mg/kg of mecoprop in soil. The method was validated by analyzing freshly spiked soil samples and samples with aged residues. In case of freshly spiked samples the overall recovery was 87% (n = 18, spiked level 0.02–8.0 mg/kg) with a repeatability of 6.8% and a reproducibility of 8.3%. No significant decrease of the recovery was observed for samples with aged residues (n = 15, spiked level 0.1 and 8.0 mg/kg) during a storage of 29 days in the refrigerator at about 4 °C; a storage of 67 days provided a mean recovery of 76% (n = 14, spiked level 8.0 mg/kg). Received: 4 May 1998 / Revised: 11 July 1998 / Accepted: 18 July 1998  相似文献   

5.
The method of protein-based stable isotope probing (protein-SIP) has previously been shown to allow the modeling of carbon fluxes in microbial communities, thus tackling one of the key questions in microbial ecology. The method allows the analysis of stable isotope distribution in peptides, revealing metabolic activities of the species present in an ecosystem. Besides carbon, an application of protein-SIP with nitrogen is of interest for resolving the nitrogen fluxes in microbial communities. Thus, the sensitivity and reliability of a protein-SIP approach employing 15N was analyzed. For this, cultivations of Pseudomonas fluorescens ATCC 17483 with different ratios of 14N/15N were performed, from 10 % down to 0.1 % 15N. After incubation leading to complete labeling of biomass, proteins were extracted and separated by one-dimensional gel electrophoresis, followed by tryptic digest and UPLC Orbitrap MS/MS analysis. 15N relative isotope abundance (RIA) was calculated based on isotopic patterns from identified peptides in mass spectra. Proteomics data have been deposited to ProteomeXchange with identifier PXD000127. The distribution of 15N RIA values among peptides was analyzed in samples with different 15N amount, and potential causes for variations within individual samples of either technical or biological origin were investigated. Using a number of 50 peptides, significant differences (p?≤?0.05) in 15N incorporation were found between samples of different 15N RIA down to 0.1 %. The study demonstrates that protein-SIP using 15N is sufficiently sensitive for quantitative investigation of microbial activity in nitrogen cycling processes.  相似文献   

6.
Natural 15N abundances (δ15N values) of different soil nitrogen pools deliver crucial information on the soil N cycle for the analysis of biogeochemical processes. Here we report on a complete suite of methods for sensitive δ15N analysis in soil extracts. A combined chemical reaction of vanadium(III) chloride (VCl3) and sodium azide under acidic conditions is used to convert nitrate into N2O, which is subsequently analyzed by purge‐and‐trap isotope ratio mass spectrometry (PTIRMS) with a cryo‐focusing unit. Coupled with preparation steps (microdiffusion for collection of ammonium, alkaline persulfate oxidation to convert total dissolved N (TDN) or ammonium into nitrate) this allows the determination of the δ15N values of nitrate, ammonium and total dissolved N (dissolved organic N, microbial biomass N) in soil extracts with the same basic protocol. The limits of quantification for δ15N analysis with a precision of 0.5‰ were 12.4 µM for ammonium, 23.7 µM for TDN, 16.5 µM for nitrate and 22.7 µM for nitrite. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Isotope analysis of biochemical compounds provides an unequivocal means for detecting assimilation of tracer C and N into microbial biomass. A diffusion method recently developed to determine amino acid-N by ninhydrin oxidation of soil hydrolysates was modified to permit simultaneous collection of the CO2 liberated during this oxidation. In the technique described herein, this is accomplished after removal of (NH4+ + amino sugar)-N, by performing ninhydrin oxidation at 90 degrees C for 7 h in a 1.9 L Mason jar sealed with a lid equipped to support a petri dish containing 5 mL 0.2N NaOH. Recoveries of carboxyl-C and alpha-N ranged from 98 to 101% in evaluations with standard solutions of amino acids, whereas these recoveries exceeded 90% for 14C and 94% for 15N when soil hydrolysates amended with labeled amino acids were analyzed.  相似文献   

8.
An analytical method based on aqueous ultrasonic extraction and packed capillary liquid chromatography-electrospray mass spectrometry (LC-ESI-MS) analysis was developed and compared to an existing gas chromatography(GC)-MS based method for the determination of sarin, soman and their hydrolysis products in contaminated soil. Three soils, a red clay, a tan sandy clay and a brown sandy clay loam, were spiked with sarin and soman and their initial hydrolysis products, isopropyl methylphosphonic acid and pinacolyl methylphosphonic acid, at the 10 microg/g level to assess recovery efficiency. Recovery of sarin and soman from the aqueous soil extracts was comparable to the existing analytical method, with a significant improvement in recovery being demonstrated for the chemical warfare agent hydrolysis products. Sarin and soman were recovered in the 20-90% range from the three soil types with aqueous extraction, while the hydrolysis products of these chemical warfare agents were extracted with recoveries in excess of 80%. The developed soil extraction and analysis method appears to be an attractive alternative to the GC-MS based method, since aqueous extracts containing chemical warfare agent hydrolysis products may be analysed directly, eliminating the need for additional sample handling and derivatization steps.  相似文献   

9.
The influence of flooding on N2O fluxes, denitrification rates, dual isotope (delta18O and delta15N) and isotopomer (1delta15N and 2delta15N) ratios of emitted N2O from estuarine intertidal zones was examined in a laboratory study using tidal flooding incubation chambers. Five replicate soil cores were collected from two differently managed intertidal zones in the estuary of the River Torridge (North Devon, UK): (1) a natural salt marsh fringing the estuary, and 2 a managed retreat site, previous agricultural land to which flooding was restored in summer 2001. Gas samples from the incubated soil cores were collected from the tidal chamber headspaces over a range of flooding conditions, and analysed for the delta18O, delta15N, 1delta15N and 2delta15N values of the emitted N2O. Isotope signals did not differ between the two sites, and nitrate addition to the flooding water did not change the isotopic content of emitted N2O. Under non-flooded conditions, the isotopic composition of the emitted N2O displayed a moderate variability in delta18O and 2delta15N delta values that was expected for microbial activity associated with denitrification. However, under flooded conditions, half of the samples showed strong and simultaneous depletions in 1delta15N and delta18O values, but not in 2delta15N. Such an isotope signal has not been reported in the literature, and it could point towards an unidentified N2O production pathway. Its signature differed from denitrification, which was generally the N2O production pathway in the salt marsh and the managed retreat site.  相似文献   

10.
Isotopic signatures of N2O are increasingly used to constrain the total global flux and the relative contribution of nitrification and denitrification to N2O emissions. Interpretation of isotopic signatures of soil-emitted N2O can be complicated by the isotopic effects of gas diffusion. The aim of our study was to measure the isotopic fractionation factors of diffusion for the isotopologues of N2O and to estimate the potential effect of diffusive fractionation during N2O fluxes from soils using simple simulations. Diffusion experiments were conducted to monitor isotopic signatures of N2O in reservoirs that lost N2O by defined diffusive fluxes. Two different mathematical approaches were used to derive diffusive isotope fractionation factors for 18O (epsilon18O), average 15N (epsilonbulk) and 15N of the central (alpha(-)) and peripheral (beta(-)) position within the linear N2O molecule (epsilon15Nalpha, epsilon15Nbeta). The measured epsilon18O was -7.79 +/- 0.27 per thousand and thus higher than the theoretical value of -8.7 per thousand. Conversely, the measured epsilonbulk (-5.23 +/- 0.27 per thousand) was lower than the theoretical value (-4.4 per thousand). The measured site-specific 15N fractionation factors were not equal, giving a difference between epsilon15Nalpha and epsilon15Nbeta (epsilonSP) of 1.55 +/- 0.28 per thousand. Diffusive fluxes of the N2O isotopologues from the soil pore space to the atmosphere were simulated, showing that isotopic signatures of N2O source pools and emitted N2O can be substantially different during periods of non-steady state fluxes. Our results show that diffusive isotope fractionation should be taken into account when interpreting natural abundance isotopic signatures of N2O fluxes from soils.  相似文献   

11.
A pot experiment was used to assess N uptake by pine seedlings during 2 years on a burnt soil to which was added (15)N-labelled ryegrass, obtained from a (15)N-enriched sample of this soil after a fire. The nitrogen concentration in needles, stems and roots of seedlings decreased significantly from the first to the second growing period (from 2.55, 1.30 and 2.19% to 1.19, 0.47 and 1.00%, respectively), with needles accounting for 53-58% of the pine-N. At the end of the experiment, 98.87 +/- 1.12% of the added ryegrass-(15)N was recovered: two-thirds in the soil organic N pool and one-third in the pine seedlings. Therefore, the post-fire pulse of inorganic-N, which was successfully kept in the burnt soil-plant system through its uptake by the pioneer species, is available for trees in the medium term. Pine seedlings assimilated 16.4% and 16.9% of the added ryegrass-(15)N in the first and second year, respectively. This result contrasts with the usual yearly decrease of added N uptake by plants; a possible explanation is the transient increase of available N in burnt soils that would have modified the mineralization pattern of the (15)N-labelled phytomass. The pine-N derived from the ryegrass-N decreased from 4.05% in the first year to 2.53% in the second one, with 3.10% being the 2-year weighed average. In addition to the direct contribution of ryegrass to pine-N nutrition reflected by these figures, the rapid post-fire establishment of a herbaceous cover on the burnt soil also provides important indirect benefits for tree nutrition by reducing organic- and inorganic-N losses. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The rate and depth of cattle dung incorporation into moorland soil may be an important factor influencing plant community dynamics through its effects on soil nutrient availability. This study traces the incorporation of (15)N-labelled dung into a moorland soil under two vegetation types in Dartmoor National Park, UK. Cores of treated and control soil 10 cm deep were collected at 2, 4, 8 and 16 week intervals and divided into 2 cm depth increments. Soil samples were freeze-dried, ground and analysed for atom% (15)N and %N content using continuous-flow isotope-ratio mass spectrometry. The contribution of dung N to the soil N pool was estimated by changes in atom% (15)N of the soil. The incorporation of dung dry matter into the soil was also calculated. The labile component of the dung N was incorporated deeper and more rapidly into soil under grass than under heather vegetation. The implications of these processes for the dynamics of upland plant communities are considered in relation to the ability of plants to compete for nutrients.  相似文献   

13.
(1)H relaxation dispersion of decalin and glycerol solutions of nitroxide radicals, 4-oxo-TEMPO-d(16)-(15)N and 4-oxo-TEMPO-d(16)-(14)N was measured in the frequency range of 10 kHz-20 MHz (for (1)H) using STELAR Field Cycling spectrometer. The purpose of the studies is to reveal how the spin dynamics of the free electron of the nitroxide radical affects the proton spin relaxation of the solvent molecules, depending on dynamical properties of the solvent. Combining the results for both solvents, the range of translational diffusion coefficients, 10(-9)-10(-11) m(2)∕s, was covered (these values refer to the relative diffusion of the solvent and solute molecules). The data were analyzed in terms of relaxation formulas including the isotropic part of the electron spin - nitrogen spin hyperfine coupling (for the case of (14)N and (15)N) and therefore valid for an arbitrary magnetic field. The influence of the hyperfine coupling on (1)H relaxation of solvent molecules depending on frequency and time-scale of the translational dynamics was discussed in detail. Special attention was given to the effect of isotope substitution ((14)N∕(15)N). In parallel, the influence of rotational dynamics on the inter-molecular (radical - solvent) electron spin - proton spin dipole-dipole coupling (which is the relaxation mechanism of solvent protons) was investigated. The rotational dynamics is of importance as the interacting spins are not placed in the molecular centers. It was demonstrated that the role of the isotropic hyperfine coupling increases for slower dynamics, but it is of importance already in the fast motion range (10(-9)m(2)∕s). The isotope effects is small, however clearly visible; the (1)H relaxation rate for the case of (15)N is larger (in the range of lower frequencies) than for (14)N. It was shown that when the diffusion coefficient decreases below 5 × 10(-11) m(2)∕s electron spin relaxation becomes of importance and its role becomes progressively more significant when the dynamics slows done. As far as the influence of the rotational dynamics is concerned, it was show that this process is of importance not only in the range of higher frequencies (like for diamagnetic solutions) but also at low and intermediate frequencies.  相似文献   

14.
The Askov field experiment (Denmark), established in 1894, provides a unique opportunity to examine long-term effects of animal manure and mineral fertilizer on soil organic matter quality and turnover. This sandy loam soil is classified as Alfisol (Typic Hapludalf). Soil C, N, S, 13C, 15N, 34S and 14C contents were measured in a selection of archived soil samples (1923, 1938, 1945, 1953, 1964, 1976, 1985, 1996 and 2000) from unfertilized (O), animal manure (1 AM) and mineral fertilizer (1 NPK) treatments. These treatments are imbedded in a four-course crop rotation of winter cereals, root crops, spring cereals and a clover/grass mixture. The contents of C, N, S, 13C, 15N and 34S in selected crop samples (1953-1996) and in contemporary samples of animal feed and manure were also determined. Temporal soil nutrient and isotope trends between fertilizer treatments were significantly different, except for S content in 1 AM and 1 NPK. The total soil C and S was higher in 1 AM and 1 NPK than in the O treatment. The total soil N content (1 AM>1 NPK>O) and the delta15N content (1 AM>1 NPK and O) were also different. Analyses of plant, animal feed and manures confirmed that differences in soil 15N values were related to delta15N values of added source inputs. Soil and crop delta13C values were similar, but manures had slightly lower values. The variation of soil delta34S (and total S) from 1923 to 1996 was larger in the O than 1 AM and 1 NPK plots reflecting changes in atmospheric S inputs. The total contents of soil C, N and S were significantly correlated, but their isotopic signatures were not, suggesting that the C, N, S turnovers in soil are subject to different controls. The 14C content was generally higher in the 1 AM than 1 NPK and O, with bomb-14C incorporation modelling indicating that mean residence time (MRT) was ca. 170 years in the 1 AM, but closer to 250-290 years in the 1 NPK and O treatments. The measured trends in soil C and 14C during 1923-1996 were successfully modelled using the RothC model. The OM accumulation in the Askov soils was generally dominated by microbial decomposition products rather than by recalcitrant components of the various inputs.  相似文献   

15.
Stable isotope ratios ((13)C/(12)C and (15)N/(14)N) were measured in royal jelly (RJ) samples by isotope ratio mass spectrometry (IRMS) to evaluate authenticity and adulteration. Carbon and nitrogen isotope contents (given as delta values relative to a standard, delta(13)C, delta(15)N) of RJ samples from various European origins and samples from commercial sources were analyzed. Uniform delta(13)C values from -26.7 to -24.9 per thousand were observed for authentic RJ from European origins. Values of delta(15)N ranged from -1.1 to 5.8 per thousand depending on the plant sources of nectars and pollen. High delta(13)C values of several commercial RJ samples from -20.8 to -13.3 per thousand indicated adulteration with high fructose corn syrup (HFCS) as a sugar source. Use of biotechnologically produced yeast powder as protein source for the adulterated samples was assumed as delta(15)N values were lower, as described for C(4) or CAM plant sources. RJ samples from authentic and from adulterated production were distinguished. The rapid and reliable method is suitable for urgent actual requirements in food monitoring.  相似文献   

16.
An analytical method for the determination of UV filters in soil and sediment has been developed and validated considering benzophenones (BP) and salicylates as target analytes. Soil and sediment samples were extracted with ethyl acetate-methanol (90:10, v/v) assisted with sonication, performing a simultaneous clean-up step. Quantification of these compounds was carried out by gas chromatography-mass spectrometry (GC-MS) after derivatization of the extracts with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA). Recoveries from spiked soil samples ranged from 89.8% to 104.4% and they were between 88.4% and 105.3% for spiked sediment samples. The effect of the residence time and soil moisture content on the recovery of these compounds was also studied. The precision, expressed as relative standard deviation, was in all cases below 6.1% and the limits of detection (S/N=3) varied from 0.07 to 0.10 ng g(-1) and from 0.11 to 0.28 ng g(-1) for soils and sediments, respectively. The validated method was applied to the analysis of five benzophenone and two salicylate UV filters in soil and sediment samples collected in different areas of Spain.  相似文献   

17.
Nitrous oxide is produced in soil during several processes, which may occur simultaneously within different micro-sites of the same soil. Stable isotope techniques have a crucial role to play in the attribution of N(2)O emissions to different microbial processes, through estimation (natural abundance, site preference) or quantification (enrichment) of processes based on the (15)N and (18)O signatures of N(2)O determined by isotope ratio mass spectrometry. These approaches have the potential to become even more powerful when linked with recent developments in secondary isotope mass spectrometry, with microbial ecology, and with modelling approaches, enabling sources of N(2)O to be considered at a wide range of scales and related to the underlying microbiology. Such source partitioning of N(2)O is inherently challenging, but is vital to close the N(2)O budget and to better understand controls on the different processes, with a view to developing appropriate management practices for mitigation of N(2)O. In this respect, it is essential that as many of the contributing processes as possible are considered in any study aimed at source attribution, as mitigation strategies for one process may not be appropriate for another. To aid such an approach, here the current state of the art is critically examined, remaining challenges are highlighted, and recommendations are made for future direction.  相似文献   

18.
We present a novel 18O-15N-enrichment method for the distinction between nitrous oxide (N2O) from nitrification, nitrifier denitrification and denitrification based on a method with single- and double-15N-labelled ammonium nitrate. We added a new treatment with 18O-labelled water to quantify N2O from nitrifier denitrification. The theory behind this is that ammonia oxidisers use oxygen (O2) from soil air for the oxidation of ammonia (NH3), but use H2O for the oxidation of the resulting hydroxylamine (NH2OH) to nitrite (NO2-). Thus, N2O from nitrification would therefore be expected to reflect the 18O signature of soil O2, whereas the 18O signature of N2O from nitrifier denitrification would reflect that of both soil O2 and H2O. It was assumed that (a) there would be no preferential removal of 18O or 16O during nitrifier denitrification or denitrification, (b) the 18O signature of the applied 18O-labelled water would remain constant over the experimental period, and (c) any O exchange between H(2)18O and NO3- would be negligible under the chosen experimental conditions. These assumptions were tested and validated for a silt loam soil at 50% water-filled pore space (WFPS) following application of 400 mg N kg-1 dry soil. We compared the results of our new method with those of a conventional inhibition method using 0.02% v/v acetylene (C2H2) and 80% v/v O2 in helium. Both the 18O-15N-enrichment and inhibitor methods identified nitrifier denitrification to be a major source of N2O, accounting for 44 and 40%, respectively, of N2O production over 24 h. However, compared to our 18O-15N-method, the inhibitor method overestimated the contribution from nitrification at the expense of denitrification, probably due to incomplete inhibition of nitrifier denitrification and denitrification by large concentrations of O2 and a negative effect of C2H2 on denitrification. We consider our new 18O-15N-enrichment method to be more reliable than the use of inhibitors; it enables the distinction between more soil sources of N2O than was previously possible and has provided the first direct evidence of the significance of nitrifier denitrification as a source of N2O in fertilised arable soil.  相似文献   

19.
A procedure was developed for the biosynthetic preparation of 15N-labelled guanosine and inosine through the action of a mutant Bacillus subtilis strain. Crude [N2,1,3,7,9-15N]guanosine and [1,3,7,9-15N]inosine were isolated from the culture filtrate by precipitation and anion-exchange chromatography (Scheme 1). No cell lysis and no enzymatic degradation was necessary. The per-isobutyrylated derivatives 1 and 2 were isolated from a complex mixture, purified by virtue of their different lipophilicity, and separated in three steps involving normal-and reversed-phase silica-gel chromatography. One litre of complex nutrient medium yielded 8.44 mmol of guanosine derivative and 2.84 mmol of inosine derivative with high average 15N enrichment (83.5 and 91.9 atom-%, resp.). [N6,1,3,7,9-15N]Adenosine ( 4 ) was obtained from 2′,3′,5′-tri-O-isobutyryl[1,3,7,9-15N]inosine ( 1 ) through the ammonolysis of its 1,2,4-triazolyl derivative with aqueous 15NH3 (Scheme 2).  相似文献   

20.
A method for determination of the 15N/14N ratio of total ammoniacal nitrogen (TAN; ammonium and ammonia) in aqueous solutions was developed, primarily intended for use with soil extracts, which have a high TAN level, e.g. from recently fertilised agricultural soils. Ammonium was converted to ammonia by addition of NaOH, followed by nitrogen isotopic analysis of the headspace by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) where complete separation of TAN from the matrix was not necessary. The ammonia concentration in the gas phase was maximised by increasing the temperature and salt concentration and by decreasing the gas liquid ratio in the headspace vials. Isotopic equilibrium was reached after less than 1 h at 80 degrees C. The measured isotopic ratio was constant for solutions containing 30-200 mM NH4-N, corresponding to 950-7000 ng NH3-N detected with the IRMS. The integrated area response at m/z 28 increased linearly with the ammonium ion concentration in the interval 10-200 mM NH4-N. The fractionation factor between the liquid and gas phases was 1.0054 +/- 0.0007 within the linear range, which is in agreement with values reported in the literature, but with a higher precision. Changes in temperature, gas:liquid ratio or salt concentration did not affect the measured ratio, demonstrating the robustness of the developed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号