首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
A series of regenerated cellulose membranes with pore diameters ranging from 21 to 52 nm have been prepared by dissolving cellulose in 5 wt% LiOH/12 wt% urea aqueous solution re-cooled to −12 °C. The influences of cellulose concentration on the structure, pore size, and the mechanical properties of the membrane were studied by using Wide angle X-ray diffraction, scanning electron micrography and tensile testing. Their pore size, water permeability, equilibrium-swelling ratio and fouling behaviors of the cellulose membranes were characterized. The water-soluble synthetic and natural polymers as organic matter were used to evaluate the microfiltration performance of the regenerated cellulose membrane for wastewater treatment in aqueous system. The results revealed that the organic matter with molecular weight more than 20 kDa effected significantly on the membrane pore density, and reducing factor a 2, whereas that having molecular weight less than 20 kDa exhibited a little influence on the membrane pore size reducing factor a 1. Furthermore, a simple model to illustrate of microfiltration process of the RC membrane for wastewater treatment was proposed.  相似文献   

2.
The tortuous capillary pore diffusion model (TCPDM) has been used for estimating diffusive and pure water permeability from simple structure parameters such as pore diameter, surface porosity, wall thickness and tortuosity. The validity of this model for evaluation of homogeneous membrane has been already confirmed. Recently, there is a trend toward the use of asymmetrical dialysis membranes made of synthetic polymer such as poly(acrylonitrile) (PAN), polysulfone (PS) and a polyethersulfone polyarylate (PEPA) blend polymer. The purpose of the present study is to apply the TCPDM to evaluation of commercially available hollow-fiber dialysis membranes with asymmetrical structures by simplifying them to a double-layer membrane. The TCPDM is capable of estimating pore tortuosity of asymmetrical dialysis membranes having skin and supporting layers from data on membrane thickness, pore diameter, pure water permeability and water content. Values for diffusive permeability obtained by the TCPDM are in a good agreement with experimental data. This TCPDM model is useful for evaluation of not only homogeneous membrane but also asymmetrical membrane.  相似文献   

3.
Membrane structure strongly affects the transport of solutes through dialysis membranes. This suggests that knowledge of membrane structure and its effects on permeability is required in order to improve the membranes. Solute transport in membrane pores is limited by steric hindrance at the pore entrances, frictional resistance of the pore walls, and the tortuosity of the pores. Differences in dyeing properties are found among the various tubular dialysis membranes made of regenerated cellulose (RC) that are commercially available. The objective of the present study is to determine intramembrane diffusivity for dyes, and from this the pore radius of RC membranes based on pore model calculations. Values of the pore radius of RC membranes obtained from intramembrane diffusivity data are in disagreement with our previously reported values obtained from solute and pure water permeability data. This indicates that RC membranes are of asymmetrical structure and slightly tight near the outside surfaces.  相似文献   

4.
Microporous membranes were prepared by the paste method. Certain properties of the resultant microporous membranes such as porosity, pore size, specific surface area, and N2 gas permeability were estimated. Furthermore, the membrane structure was observed with the aid of scanning electron microscopy. It was elucidated that the membranes consist of aggregates of minute spherical particles, made up of poly(styrene-divinylbenzene) with micropores.  相似文献   

5.
The paper considers ultrafiltration of lignosulfonates (LS) under predominantly the gel formation conditions. An effort is to determine the molecular weight retention (MWR) curves of a series of ultrafiltration membranes differing in their pore size under in turn different operating pressures (1–32 bar). The initial separative properties (both retentivity and volume flux) of all membranes are shown to change because of gel formation occurring actually instantly as a cake layer placed mostly onto the membrane surface. The transmembrane pressure-drop sets up primarily these properties but the initial hydrodynamic permeability coefficient of a membrane (i.e. its mean pore size) is also of concern. As a result, an increase in that pressure results in a shift of the molecular weight retention curves of all membranes under study towards lower molecular weights: the more, the higher their mean pore size. Further, these curves become more abrupt in their form, and such a change depends on the mean pore size of a membrane as well.  相似文献   

6.
Chitosan was functionalized either by introducing a phosphonic acid group or by quaternization of existing primary ammonium groups in order to make it a water-soluble material. Functionalized chitosans and poly(vinyl alcohol) (PVA)-based nanoporous charged membranes were prepared in aqueous media and gelated in methanol at 10 degrees C to tailor their pore structure. These membranes were extensively characterized for their physicochemical, electrochemical, and permeation characteristics using FTIR, TGA, DSC, water content, ion-exchange capacity, ionic transport properties, and membrane permeability studies. N-Methylene phosphonic chitosan (NMPC)/PVA-based membranes exhibited mild cation selectivity and quaternized chitosan (QC)/PVA composite membranes had mild anion selectivity, while a blend of NMPC-QC/PVA membranes exhibited weak cation selectivity because of formation of zwitterionic structure. Viscosity measurements and interaction studies for individual and mixed solutions of NMPC and QC were carried out for the prediction of charge interactions between -PO3H2 and -N+(CH3)3 groups and effect on molecular weight due to functionalization. Elaborate electrochemical and permeation experiments were conducted in order to predict suitability of these membranes for the separation of mono- and bivalent electrolytes based on their hydrated ionic radius, and it was found that among all the synthesized membranes, PC/QC-30 had the highest relative permeability, which may extend its suitability for electrolyte separations. Observations were correlated with equivalent pore radius of the different membranes as estimated by membrane permeability measurements.  相似文献   

7.
Morphological properties of hydrophilic and hydrophobic Shirasu-porous-glass (SPG) membranes were investigated over a wide range of mean pore sizes (0.252–20.3 μm) by liquid permeability measurements, scanning electron microscopy and Hg porosimetry. Hydrophobic modification of membrane surface was made by surface coating with silicone resin. The results are discussed using the non-uniform capillary bundle model of membrane permeability. The mean pore tortuosity of 1.28 was kept constant over the whole range of mean pore sizes investigated. The SEM images confirmed that the geometry of pore network was similar for all SPG membranes, irrespective of their mean pore size. The span of pore size distribution ranged from 0.28 to 0.68 and the number of pores per unit cross-sectional membrane area from 109 to 1013 m−2. The membrane resistance was unchanged after surface treatment with silicone resin, which means that the pores were not plugged by the resin, even in the submicron range of mean pore sizes.  相似文献   

8.
A new ultra-filtration membrane has been developed using indigenously available polymer, low cost solvents and a simple casting technique. The performance evaluation of the developed membrane in terms of pure water permeability (PWP), flux and rejection as compared to commercially available national and international membranes was carried out. It is observed that the newly developed membranes show acceptable performance both in terms of flux and rejection. The compressibility characteristic of the new membrane shows an improvement after suitable chemical modification through cross-linking reactions. The application perspectives of the membranes developed in our laboratory have been evaluated for the selective separation of dyes from typical textile waste stream of polyester fibre dyeing units with an aim to recover and recirculate the auxiliary chemicals and water in the process house. The rejection of dyes >98% and the permeate flux (0.8–1.0 m3/m2 per day) values obtained for a specific type of textile effluent is of acceptable standards.The membranes were characterised for pore size and pore size distribution using molecular weight cut-off, combined bubble pressure and solvent permeability method. Membrane morphology has been studied using scanning electron microscopy (SEM). The other features of the developed membrane are its resistance to temperature and adverse chemical environment.  相似文献   

9.
pH‐sensitive poly (vinylidene fluoride) (PVDF)/poly (acrylic acid) (PAA) microgels membranes are prepared by phase inversion of the N, N‐dimethylformamide solution containing PAA microgels and PVDF in aqueous solution. The composition and structure of the blend membrane are investigated by Fourier transform infrared spectra, X‐ray photoelectron spectroscopy measurements, thermo gravimetric analysis, field‐emission scanning electron microscope and atomic force microscope. The results indicate the surface and cross section of the blend membranes have a porous structure with PAA microgels immobilized inside the pore and on the membrane surface. The blend PVDF membranes exhibit pH‐sensitive water flux, with the most drastic change in permeability observed between pH 3.7 and 6.3. The blend membranes are fouled by bovine serum albumin, and their antifouling property is enhanced by increasing PAA microgels, mainly derived from the improved hydrophilic property. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
11.
The blend membranes were prepared from cellulose/konjac glucomannan (KGM) cuprammonium solution by coagulating with aqueous 10 wt% NaOH solution, 20°C and 40°C water, respectively. Miscibility, pore morphology, structure, water permeability and mechanical properties of the blend membranes were investigated. The complex forms of cellulose/KGM in the mixed solutions, the effect of various coagulants and the percent content of KGM (wKGM) on the structure and properties of the blend membrane are discussed. SEM and mechanical relaxation analysis indicate that the blend membranes are miscible in the range of 0–30 wt% of wKGM. When wKGM was smaller than 20 wt%, the tensil strength of the blend membrane coagulated by alkali aqueous solution was enhanced, corresponding to homogeneous structure and small pore size. However, blend membranes having a larger pore size (366 nm by SEM) and water permeability (560 ml/m2 h mmHg) were obtained by coagulating the cellulose/KGM (70:30) cuprammonium solution with 40°C water, where ca. 20% of KGM as pore former were removed from the membrane.  相似文献   

12.
The pressure-driven transport of water, ethanol, and 1-propanol through supported gamma-alumina membranes with different pore diameters is reported. Water and alcohols had similar permeabilities when they were transported through gamma-alumina membranes with average pore diameters of 4.4 and 6.0 nm, and the permeability coefficient was found to be proportional to the square of pore size, in accordance with a viscous flow mechanism. For transport through membranes with an average diameter of 3.2 nm, the behavior of water was in accordance with the viscous flow mechanism, but the permeability of the membrane for ethanol and 1-propanol was much smaller than expected and could not be explained in terms of viscous flow. Although the low permeability of the membrane with 3.2 nm pores for ethanol and 1-propanol was partly due to the presence of small amounts of water in the alcohols, the permeability coefficients were still substantially smaller when water was absent. This intrinsic difference between water and alcohol may be due to differences in molecular size, chemisorption of alcohols on the oxide pore wall, which would lead to a reduction of the effective pore size, and/or a certain degree of translational ordering of the alcohol molecules inside the membrane pores, which leads to an effectively higher viscosity and, therefore, to a higher transport resistance.  相似文献   

13.
Surface porosities of Amicon XM100A and XM300 membranes have been measured by electron microscopy and found to be less than 1 per cent. From the measured pore size distributions it is deduced that 50 per cent of the solvent flow is through 20 to 25 per cent of the pores.The conventional model for concentration polarisation in ultrafiltration (UF), which assumes a homogeneously permeable membrane surface, has been modified to account for regions of differing permeability. An effective free area correction factor (≤ 1.0) has been introduced to allow for the effect of membrane surface properties on gel-polarised UF flux.Ultrafiltration experiments with protein solutions and membranes with a range of water fluxes confirm that gel-polarised UF flux is dependent on membrane permeability and surface properties. Effective free area correction factors vary from about 0.4 to 1.0 with values < 1.0 obtained for membranes with water fluxes typically < 150 1/m2 hr at 100 kPaSupport for the effective free area concept in UF is provided by an analogy between a gel-polarised UF membrane and a composite reverse osmosis membrane. In both cases the magnitude of the upper ‘controlling’ resistance may be influenced by the pore size and spacing of the lower supporting structure.  相似文献   

14.
Non-contact atomic force microscopy (AFM) has been used to investigate the furface pore structure of a polyethersulfone ultrafitration membrane of specified molecular weight cut off (MWCO) 25 000 (ES625, PCI Membrane Systems). Excellent images at up to single pore resolution were obtained. This is the first time that AFM images of a membrane at such high resolution have been presented. Analysis of the images gave a mean pore size of 5.1 nm with a standard deviation of 1.1 nm. The results have been compared to previously published studies of membranes of comparable MWCO using contact AFM and electron microscopy. Non-contact AFM is a powerful means of studying the surface pore characteristics of ultrafiltration membranes.  相似文献   

15.
16.
The measurement of the gas permeability coefficient as a function of the mean pressure across a membrane can be used to determine a mean pore radius of the membrane. This method has been applied by several authors to characterize microporous and asymmetric ultrafiltration or hyperfiltration membranes. This paper shows how the data acquisition and handling are improved. Experiments are performed on microporous Millipore membranes with a nominal pore radius of 50 nm and on ultrafiltration merebranes of poly(2,6-dimethyl-1,4-phenyleneoxide) with an expectedly sharp pore-size distribution around 2 nm. For the Millipore membrane an unexpected dependence of the calculated pore radius on the type of gas used in the experiment has been found. Measurements on the ultrafiltration membranes indicate that the viscous flow contribution to the permeability coefficient cannot be determined with sufficient accuracy. It is concluded that application of the gas permeation method has some limitations which were not previously recognized.  相似文献   

17.
通过熔体挤出拉伸法以两种聚丙烯为原料制备微孔膜.通过考察原料分子量数据发现高分子量聚丙烯(PPH)在高分子量级分(重均分子量>106)含量上大于低分子量聚丙烯(F401).PPH的弛豫时间在相同条件下也远大于F401.红外二向光法结果表明,PPH在相同熔体牵伸比下片晶取向度较F401高.相同加工条件下PPH微孔膜片较F401成孔分布更均匀,孔径尺寸也更均匀.2种微孔膜孔隙率都随熔体牵伸比的增加而提高,微孔分布随着熔体牵伸比的提高和片晶取向度的增加而趋于均匀,孔尺寸也随之区域均匀.研究表明,聚合物树脂中高分子量级分含量是影响预制膜中片晶取向度、冷热拉伸成孔分布和尺寸均匀度的重要影响因素.  相似文献   

18.
Noncontact atomic force microscopy (AFM) has been used to investigate the surface pore structure of eight Diaflo ultrafiltration membranes covering a range of nominal molecular weight cutoff (MWCO) from 3000 to 300,000 and manufactured from three different polymer types. Excellent high resolution images were obtained. Analysis of the pore images gave quantitative information on the surface pore structure, in particular the pore size distribution and surface roughness. Such data is compared to that obtained by other techniques. Noncontact AFM is a facile and informative means of studying the surface structure of porous materials such as synthetic membranes.  相似文献   

19.
When transport-efficient membrane modules (such as those where the liquid flows outside hollow fibre membranes) or membranes with prolonged resistance to wetting are used for the oxygenation of blood or other cell suspensions, membrane contribution to the overall oxygen transfer resistance into the liquid may become significant. Thus, estimation of membrane diffusive permeability towards relevant gases (e.g., oxygen) is important to develop new membranes and to ensure reproducible commercial membrane performance.

In this paper, we report on a turbulent flow technique for the estimation of the oxygen diffusive permeability of membranes used in outside-flow oxygenators. Water is re-circulated under turbulent flow conditions in a closed-loop from a reservoir to the shell of lab-scale membrane modules. The overall oxygen transfer to water coefficient is estimated at increasing water flow rates from the time the change of dissolved oxygen tension in the stream leaving the water reservoir occurs. Oxygen diffusive permeability is estimated as the reciprocal overall transfer resistance at infinitely high water flow rates, for negligible gas-side oxygen transport resistance. The technique was used to estimate oxygen diffusive permeability of commercial Oxyphan® polypropylene membranes for blood oxygenation and of two laboratory polypropylene membranes, the one featuring a microporous wall structure with smaller-than-standard pore size, the other featuring an outer thin, dense layer supported by a thick spongy layer. The turbulent flow technique yields oxygen diffusive permeability estimates consistent both with membrane hydraulic permeability towards gaseous nitrogen, membrane wall structure, and with values in literature obtained using a liquid reactive with oxygen, but without the complications associated with reaction and physical transport kinetic characterisation. We conclude that the turbulent flow technique is a useful tool in the development and quality control of membranes for the oxygenation of blood and other cell suspensions.  相似文献   


20.
Cellulose acetate (CA) membranes blended with Polyethylene glycol (PEG) in acetone–water solvent system were synthesized by using solution-casting method that resulted in the formation of flexible, white membranes. Different molecular weight (MW) grades of PEG (including MW 1000, 10,000 and 20,000?g/mol) were used. Cast membranes were tested for tensile strength and permeability at different loading of PEG MW 10,000 and 20,000?g/mol. Excellent flexible membranes were produced in acetone–water solvent system in the presence of PEG, which were otherwise brittle. Surface structure and morphology were analysed using scanning electron microscopy. The presence of different functional groups was confirmed using Fourier transform infra-red spectroscopy and the mechanical characteristics were studied by tensile testing. The introduction of PEG caused an increase in permeability of the membranes. The increase in permeability is due to the opening up of pores as the membrane becomes more flexible, when the plasticizer is added. The permeability continues to increase with the addition of PEG. Moreover, the resulting membranes are not only more flexible, but also have largely improved tensile strength as compared to the CA membranes without PEG. This improved tensile strength can also be attributed to the improved flexibility of the membrane. A trade-off is reached between tensile strength and permeability as increasing amount of PEG improves tensile strength but the resulting membrane becomes too permeable to be used for gas separation. Moreover, using PEG of higher MW resulted in porous membranes, even at low amounts of PEG. Therefore, we concluded that CA membrane with less amount of low-MW PEG (i.e. 5% PEG of MW 1000?g/mol) must be used to optimize both permeability and tensile strength of the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号