首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 959 毫秒
1.
The reactions of [RuHCl(CO)(B)(EPh3)2] (B = EPh3 or Py; E = P or As) and Schiff bases in 1:1 molar ratio led to the formation of [RuCl(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = Schiff base ligand). The new complexes have been characterized by analytical and spectroscopic (IR, electronic and 1H NMR) data. They have been assigned an octahedral structure. The new complexes were found to catalyse the transfer hydrogenation of ketones.  相似文献   

2.
A series of six-coordinate ruthenium(II) complexes [Ru(CO)(L x )(B)] (B = PPh3, AsPh3 or Py; L x = unsymmetrical tetradentate Schiff base, x = 5–8; L5= salen-2-hyna, L6= Cl-salen-2-hyna, L7= valen-2-hyna, L8= o-hyac-2-hyna) have been prepared by reacting [RuHCl(CO)(EPh3)2(B)] (E = P or As) with unsymmetrical Schiff bases in benzene under reflux. The new complexes have been characterized by analytical and spectroscopic (infrared, electronic, 1H, 31P, and 13C NMR) data. An octahedral structure has been assigned for all the complexes. The new complexes are efficient catalysts for the transfer hydrogenation of ketones and also exhibit catalytic activity for the carbon–carbon coupling reactions.  相似文献   

3.
The reaction of the Schiff bases (obtained by condensing isatin with o‐aminophenol/o‐aminothiophenol/o‐aminobenzoic acid) with [RuX3(EPh3)3] (where X = Cl/Br; E = P/As) in benzene afforded new, air‐stable Ru(III) complexes of the general formula [Ru(L)X(EPh3)2] (L = dianion of tridentate Schiff bases). In all these reactions, the Schiff base ligand replaces one triphenylphosphine/triphenylarsine and two chlorides/bromides from the ruthenium precursors. The complexes were characterized by elemental analyses, spectral (FT–IR, UV–vis, 1H and 13C NMR for the ligands, and EPR) and electrochemical studies. All the metal complexes exhibit characteristic LMCT absorption bands in the visible region. The catalytic reactivity proved these complexes to be efficient catalysts in the oxidation of alcohols and C? C coupling. All the complexes were screened for their biocidal efficiency against bacteria such as Staphylococcus epidermidis and Escherichia coli and fungi such as Botrytis cinerea and Aspergillus niger at 0.25, 0.50 and 1% concentrations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A series of new hexa-coordinated ruthenium(II) carbonyl complexes of the type [RuCl(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = 2′-hydroxychalcones) have been prepared by reacting [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) with 2′-hydroxychalcones in benzene under reflux. The new complexes have been characterized by analytical and spectral (IR, electronic, 1H, 31P and 13C NMR) data. Based on the above data, an octahedral structure has been assigned for all the complexes. The new complexes exhibit catalytic activity for the oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide (NMO) as co-oxidant and also found efficient catalyst in the transfer hydrogenation of ketones. The antifungal properties of the complexes have also been examined and compared with standard Bavistin.  相似文献   

5.
Reactions of ruthenium(II) complexes [RuHX(CO)(EPh3)2(B)] (X = H or Cl; B = EPh3, pyridine (py) or piperidine (pip); E = P or As) with bidentate Schiff base ligands derived by condensingo- hydroxyacetophenone with aniline,o- orp-methylaniline have been carried out. The products were characterized by analytical, IR, electronic and1H-NMR spectral studies and are formulated as [Ru(X)(CO) (L)(EPh3)(B)] (L = Schiff base anion; X = H or Cl; B = EPh3, py or pip; E = P or As). An octahedral structure has been tentatively proposed for the new complexes. The new complexes were tested for their catalytic activities in the oxidation of benzyl alcohol to benzaldehyde.  相似文献   

6.
A series of air-stable, low-spin Ru(III) octahedral complexes [RuX(EPh3)L] (where X = Cl/Br; E = P/As; and L = dibasic tetradentate Schiff base derived by condensation of ethylenediamine with acetoacetanilide/acetoacetotoluidide/ethylacetoacetate in 1 : 2 molar ratio in ethanol) have been synthesized from RuX3(EPh3)3 (where X = Cl/Br and E = P/As) with Schiff bases in 1 : 1 molar ratio in benzene for 6 h. These complexes were characterized by elemental analysis, spectral methods (Fourier transform infrared (FT-IR), UV-Vis, 1H- and 13C-nuclear magnetic resonance (NMR) for the ligands, and electron paramagnetic resonance (EPR)), and are examined electrochemically. The complexes were efficient catalysts for oxidation of primary and secondary alcohols in their corresponding aldehydes and ketones in the presence of molecular oxygen. These complexes were also tested for their antibacterial and antifungal activities.  相似文献   

7.
A series of ruthenium(III) complexes [RuX(EPh3)2L] (where X = Cl or Br; E = P or As; L = deprotonated dibasic tridentate ligand) were prepared by the reaction of [RuX3(EPh3)3] with Schiff bases (H2L1–H2L4). The ligands were prepared by the condensation of N-4 phenyl/methyl semicarbazide with o-vanillin/o-hydroxy acetophenone. The complexes were characterized by elemental, physico-chemical, and electrochemical methods. Catalytic studies of these complexes for the oxidation of alcohols and aryl–aryl coupling were carried out. Antimicrobial experiments were also carried out.  相似文献   

8.
New mononuclear ruthenium(III) Schiff base complexes of the type [RuX2(EPh3)(L)] (X = Cl or Br; E = P or As; L = monobasic tridentate Schiff base derived from o-aminophenol or o-aminothiophenol with ethylacetoacetate or ethylbenzoylacetate) have been synthesized. The Schiff base ligands chelate to ruthenium through O, N, and O/S by dissociation of the phenolic proton/thiophenolic proton forming chelate rings. These complexes have been characterized by physico-chemical and spectroscopic methods. Cyclic voltammetric data of all the complexes showed Ru(III)/Ru(IV) oxidation and Ru(III)/Ru(II) reduction within the range of 0–1.5 V and 0 to −1.5 V with respect to Ag/AgCl, respectively. The complexes were tested as catalysts in the oxidation of alcohols using molecular oxygen at ambient temperature, and also in C–C coupling reactions. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
New hexa‐coordinated ruthenium (III) complexes of the type [RuX(EPh3)2(L)] (X = Cl or Br; L = dibasic tridentate Schiff base ligand; E = P or As) have been synthesized by the reactions of [RuCl3(PPh3)3], [RuCl3(AsPh3)3] or [RuBr3(AsPh3)3] with the appropriate Schiff base ligands derived by the condensation of salicylaldehyde and 2‐hydroxy‐1‐naphthaldehyde with N(4) substituted thiosemicarbazones. All the new complexes were characterized using various physico‐chemical methods such as elemental analyses, infrared, electron paramagnetic resonance (EPR) spectroscopy, magnetic moment and cyclic voltammetry. Based on the extended X‐ray absorption fine structure (EXAFS) analysis, an octahedral structure has been confirmed for the complexes. The new complexes have been subjected to the catalytic activity and antibacterial studies. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Seven novel aluminium complexes supported by Schiff base ligands derived from o‐diaminobenzene or o‐aminothiophenol were synthesized and characterized. The reactions of AlMe3 with L1 (N,N′‐bis(benzylidine)‐o‐phenylenediamine) and L2 (N,N′‐bis(2‐thienylmethylene)‐o‐phenylenediamine) gave the complexes L1AlMe3 ( 1 ) and L2AlMe2 ( 2 ), respectively, which involved two types of reaction mechanisms: one was proton transfer and ring closure, and the other was alkyl transfer. Complexes L3AlMe2 (HL3 = 4‐chlorobenzylidene‐o‐aminothiophenol) ( 3 ), L4AlMe2 (HL4 = 2‐thiophenecarboxaldehyde‐o‐aminothiophenol) ( 4 ), L3AlH(NMe3) ( 5 ), L4AlH(NMe3) ( 6 ) and L5AlH(NMe3) (HL5 = 4‐methylbenzylidene‐o‐aminothiophenol) ( 7 ) were prepared by reacting HL3–5 with equimolar AlMe3 or H3Al?NMe3, respectively. Compounds 3 – 7 feature an organic–inorganic hybrid containing CNAlSC five‐membered ring. All complexes were characterized using 1H NMR and 13C NMR spectroscopy, X‐ray crystal structure analysis and elemental analysis. The efficient catalytic performances of 1 – 7 for the hydroboration of carbonyl groups were investigated, with compound 4 exhibiting the highest catalytic activity among all the complexes.  相似文献   

11.
New ruthenium(III) complexes of the [RuY(LL)(E)2] type (Y = Cl or Br; LL = tridentate Schiff bases; E = PPh3 or AsPh3) have been synthesised by reacting [RuX3(EPh3)3] (X = Cl, E = P; X = Cl or Br, E = As) or [RuBr3(EPh3)2(MeOH)] with Schiff bases having the donor groups (O, N, X) viz., salicylaldehydethiosemicarbazone (X = S), salicylaldehydesemicarbazone (X = O), o-hydroxyacetophenonethiosemicarbazone (X = S) and o-hydroxyacetophenonesemicarbazone (X = O). The new complexes were characterised by elemental analysis, spectral (i.r., electronic spectra, e.p.r.), magnetic moment and cyclic voltammetry data. Biocidal activity studies were also carried out for the new complexes.  相似文献   

12.
B. Machura  M. Wolff  J. Kusz  R. Kruszynski   《Polyhedron》2009,28(14):2949-2964
The paper presents a combined experimental and computational study of mono- and disubstituted Re(V) oxocomplexes obtained in the reactions of [ReOX3(EPh3)2] (X = Cl, Br; E = P, As) with 2-(2-hydroxyphenyl)-1H-benzimidazole (Hhpb). From the reactions of [ReOX3(PPh3)2] with Hhpb in molar ratio 1:1 cis and trans stereoisomers of [ReOX2(hpb)(PPh3)] were isolated, whereas the [ReOX3(AsPh3)2] oxocompounds react with Hhpb to give only cis-halide isomers. The [ReOX2(hpb)(EPh3)] and [ReO(OMe)(hpb)2]·MeCN complexes have been characterized spectroscopically and structurally (by single-crystal X-ray diffraction). The DFT and TDDFT calculations have been carried out for the trans-[ReOBr2(hpb)(PPh3)], cis-[ReOBr2(hpb)(AsPh3)] and [ReO(OMe)(hpb)2], and their UV–Vis spectra have been discussed on this basis.  相似文献   

13.
A new series of hexa‐coordinated stable Ru(III) Schiff base complexes of the type [RuX(EPh3)(L)] (where X = Cl/Br; E = P/As; L = tetradentate N2O2 donor Schiff ligands) have been synthesized and characterized by elemental analysis, magnetic susceptibility measurement, FT‐IR, UV–vis, 13C{1H}‐NMR, ESR spectra, electrochemical and powder X‐ray diffraction pattern studies. The selective oxidation of alcohols to their corresponding carbonyl compounds occurred in the presence of N‐methylmorpholin‐N‐oxide (NMO), H2O2 and O2 atmosphere at ambient temperature as co‐oxidants and C? C coupling reactions. Further, these new Schiff base ligands and their Ru(III) complexes were also screened for their antibacterial activity against K. pneumoniae, Shigella sp., M. luteus, E. coli and S. typhi. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The reactions of ruthenium(II) complexes, [RuHCl(CO)(PPh3)2(B)] [B = PPh3, pyridine (py) or piperidine (pip)], with bidentate Schiff base ligands derived by condensing salicylaldehyde with aniline, o-, m- or p-toluidine have been carried out. The products were characterised by analytical, i.r., electronic, 1H-n.m.r. and 31P-n.m.r. spectral studies and are formulated as [RuCl(CO)(L)(PPh3)(B)] (L = Schiff base anion; B = PPh3, py or pip). An octahedral structure has been tentatively proposed for the new complexes. The Schiff bases and the new complexes were tested in vitro to evaluate their activity against the fungus Aspergillus flavus.  相似文献   

15.
Complexes of the type [Ru(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3, py or pip; L = dianion of the Schiff bases derived from the condensation of salicyloyl hydrazide with acetone, ethyl methyl ketone and salicylaldehyde have been synthesised by the reaction of equimolar amounts of [RuHCl(CO)(EPh3)2(B)] and Schiff bases in benzene. The resulting complexes have been characterized by analytical and spectral (i.r., electronic, n.m.r.) data. The arrangements of Ph3P groups around the Ru metal was determined from 31P-n.m.r. spectra. An octahedral structure has been assigned to all the new complexes. All the complexes exhibit catalytic activity for the oxidation of benzyl alcohol and cyclohexanol in the presence of N-methylmorpholine-N-oxide as co-oxidant.  相似文献   

16.
The synthesis and characterization of several hexa‐coordinated ruthenium(III) Schiff base complexes of the type [RuX(EPh3)(L)] (X = Cl or Br; E = P or As; L = dianion of the tetradentate Schiff base) are reported. IR, EPR, electronic spectra and cyclic voltammetric data of the complexes are discussed. An octahedral geometry has been tentatively proposed for all of these complexes. The new complexes have been subjected to catalytic activity in the reaction of oxidation of alcohols in the presence of N‐methylmorpholine‐N‐oxide. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
New mixed ligand complexes of transition metals were synthesized from a Schiff base (L1) obtained by the condensation reaction of oxamide and furfural as primary ligand and 2,2′‐bipyridine (L2) as secondary ligand. The ligands and their metal complexes were studied using various spectroscopic methods. Also thermal analyses were conducted. The mixed ligand complexes were found to have formulae [M(L1)(L2)]Clm n H2O (M = Cr(III) and Fe(III): m  = 3, n  = 0; M = Cu(II) and Cd(II): m  = 2, n  = 1; M = Mn(II), Co(II), Ni(II) and Zn(II): m  = 2, n  = 0). The resultant data revealed that the metal complexes have octahedral structure. Also, the mixed ligand complexes are electrolytic. The biological and anticancer activities of the new compounds were tested against breast cancer (MCF‐7) and colon cancer (HCT‐116) cell lines. The results showed high activity for the synthesized compounds.  相似文献   

18.
Binuclear ruthenium(III) complexes containing a binucleating Schiff base ligand, L and Ph3P or Ph3As, [RuX2(EPh3)2]2L (X = Cl or Br; E = P or As) have been prepared by reacting [RuCl3(PPh3)3], [RuCl3(AsPh3)3], [RuBr3(AsPh3)3] and [RuBr3(PPh3)2(MeOH)] with Schiff bases in a 2:1 molar ratio. The Schiff bases used in this study were prepared by condensing the appropriate diamine with salicylaldehyde or benzoylacetone in a 1:2 molar ratio respectively. The complexes were characterised by analytical, spectral (i.r., electronic, e.p.r.) and electrochemical data. An octahedral structure has been proposed for all the new ligand-bridged binuclear RuIII complexes. The new complexes have been used as catalysts in aryl–aryl couplings and also subjected to antifungal activity studies.  相似文献   

19.
Schiff bases obtained by the condensation of 2-amino-5-mercapto-1,3,4-thiadiazole with 2,4-pentandione or 1-phenyl-1,3-butandione were synthesized and characterized in order to obtain polydentate ligands HL1 and HL2, respectively. The complexes with these ligands of the type M(L)Cl·nH2O [(1) M:Ni, L:L1, n = 0.5; (3) M:Ni, L:L2, n = 0.5]; [(2) M:Cu, L:L1, n = 1; (4) M:Cu, L:L2, n = 0] were also synthesized and characterized. The modifications evidenced in IR spectra of complexes were correlated with the presence of monodeprotonate Schiff bases. The electronic spectra display the characteristic pattern of square-planar stereochemistry. The in vitro qualitative and quantitative antimicrobial activity assays showed that the new complexes exhibited variable antimicrobial activity. The thermal analyses have evidenced the thermal intervals of stability and also the thermodynamic effects that accompany them. Schiff bases and complexes have a similar thermal behaviour. Processes as water elimination, melting, chloride anion removal as well as oxidative degradation of the organic ligands were observed.  相似文献   

20.
A series of new binuclear Ru(III) complexes of the type {[RuX3(EPh3)]2(bis- β-dk)} [X = Cl/Br; E = P/As bis- β-dk = bis(β-diketone)] have been prepared by reacting [RuCl3(PPh3)3], [RuCl3(AsPh3)3], [RuBr3(PPh3)3], [RuBr3(AsPh3)3] with bis(β-diketones) in a 2:1 molar ratio in benzene. These complexes have been characterized by physico-chemical and spectroscopic methods. The redox property of the complexes were studied by cyclic voltammetric technique. The complexes were found to be effective catalysts for the aryl–aryl coupling and oxidation of benzyl alcohol, cyclohexanol, propan-1-ol and 2-methylpropanol to benzaldehyde, cyclohexanone, propionaldehyde and 2-methylpropionaldehyde, respectively, using molecular oxygen as primary oxidant. All the complexes have been screened for their antibacterial and antifungal activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号