首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For charged black holes in Ho?ava–Lifshitz gravity, a second order phase transition takes place in extended phase space where the cosmological constant is taken as thermodynamic pressure. We relate the second order nature of phase transition to the fact that the phase transition occurs at a sharp temperature and not over a temperature interval. Once we know the continuity of the first derivatives of the Gibbs free energy, we show that all the Ehrenfest equations are readily satisfied. We study the effect of the perturbation of the cosmological constant as well as the perturbation of the electric charge on thermodynamic stability of Ho?ava–Lifshitz black hole. We also use thermodynamic geometry to study phase transition in extended phase space. We investigate the behavior of scalar curvature of Weinhold, Ruppeiner, and Quevedo metric in extended phase space of charged Ho?ava–Lifshitz black holes. It is checked if these curvatures could reproduce the result of specific heat for the phase transition.  相似文献   

2.
Shuxuan Ying 《中国物理C(英文版)》2020,44(12):125101-125101-9
Recently, the non-trivial solutions for 4-dimensional black holes of Einstein-Gauss-Bonnet gravity had been discovered. In this paper, considering a charged particle entering into a 4-dimensional Gauss-Bonnet-Maxwell black hole, we calculate the black hole thermodynamic properties using the Hamilton-Jacobi equation. In the normal phase space, the cosmological constant and Gauss-Bonnet parameter are fixed, the black hole satisfies the first and second laws of thermodynamics, and the weak cosmic censorship conjecture (WCCC) is valid. On the other hand, in the case of extended phase space, the cosmological constant and Gauss-Bonnet parameter are treated as thermodynamic variables. The black hole also satisfies the first law of thermodynamics. However, the increase or decrease in the black hole's entropy depends on some specific conditions. Finally, we observe that the WCCC is violated for the near-extremal black holes in the extended phase space.  相似文献   

3.
De Sitter black holes have the black hole horizon and the cosmological horizon, and the thermodynamic quantities on the two horizons all satisfy the first law of thermodynamics. The thermodynamic quantities on the two horizons are not independent but are correlated to each other. Taking de Sitter space-time as thermodynamic system, we investigated the effective thermodynamic quantities of Reissner–Nordström de Sitter black hole surrounded by the quintessence (RN-DSQ). We obtained the effective temperature and entropy of the system by considering the corrections between the black hole horizon and the cosmological horizon. We found that the entropy of the RN-DSQ is in agreement with that of Reissner–Nordström de Sitter black hole. It offers a basis for further studying of the thermodynamic properties of de Sitter space-time.  相似文献   

4.
We construct a new analytic solution of Einstein–Born–Infeld-dilaton theory in the presence of Liouville-type potentials for the dilaton field. These solutions describe dilaton black holes with nontrivial topology and nonlinear electrodynamics. Black hole horizons and cosmological horizons in these spacetimes, can be a two-dimensional positive, zero or negative constant curvature surface. The asymptotic behavior of these solutions are neither flat nor (A)dS. We calculate the conserved and thermodynamic quantities of these solutions and verify that these quantities satisfy the first law of black hole thermodynamics.  相似文献   

5.
We consider a holographic extended phase space in the presence of Reissner-Nordstrom-Anti-de Sitter(RNAdS) and Born-Infeld-Anti-de Sitter(BI-AdS) black holes in the bulk. In this extended phase space the cosmological constant is investigated as pressure and volume is defined as the codimension one-time slice in the bulk geometry enclosed by the minimal area appearing in the computation of the holographic entanglement entropy. These thermodynamics quantities can serve as probes of the underlying phase transition dictated by black hole thermodynamics, but do not describe different structures. We find that the isocharges on the pressure-volume plane exhibit a Van der Waals-like structure, for RN-AdS black holes in the background. For BI-AdS black holes, we observe the analogy with a Van der Waals liquid-gas system for βQ 1/2 and Reentrant phase transition for βQ 1/2 in the holographic extended phase space. The same holographic thermodynamic behavior is observed when we use the fidelity susceptibility as the volume and the cosmological constant as the pressure for RN-AdS black hole in the background.  相似文献   

6.
Considering the cosmological constant as the pressure, this study addresses the laws of thermodynamics and weak cosmic censorship conjecture in the Reissner-Nordstr?m-AdS black hole surrounded by quintessence dark energy under charged particle absorption. The first law of thermodynamics is found to be valid as a particle is absorbed by the black hole. The second law, however, is violated for the extremal and near-extremal black holes, because the entropy of these black hole decrease. Moreover, we find that the extremal black hole does not change its configuration in the extended phase space, implying that the weak cosmic censorship conjecture is valid. Remarkably, the near-extremal black hole can be overcharged beyond the extremal condition under charged particle absorption. Hence, the cosmic censorship conjecture could be violated for the near-extremal black hole in the extended phase space. For comparison, we also discuss the first law, second law, and the weak cosmic censorship conjecture in normal phase space, and find that all of them are valid in this case.  相似文献   

7.
In General Relativity, addressing coupling to a non-linear electromagnetic field, together with a negative cosmological constant, we obtain the general static spherical symmetric black hole solution with magnetic charges, which is asymptotic to anti-de Sitter (AdS) space-times. In particular, for a degenerate case the solution becomes a Hayward–AdS black hole, which is regular everywhere in the full space-time. The existence of such a regular black hole solution preserves the weak energy condition, while the strong energy condition is violated. We then derive the first law and the Smarr formula of the black hole solution. We further discuss its thermodynamic properties and study the critical phenomena in the extended phase space where the cosmological constant is treated as a thermodynamic variable as well as the parameter associated with the non-linear electrodynamics. We obtain many interesting results such as: the Maxwell equal area law in the \(P{-}V\) (or \(S{-}T\)) diagram is violated and consequently the critical point \((T_*,P_*)\) of the first order small–large black hole transition does not coincide with the inflection point (\(T_c,P_c\)) of the isotherms; the Clapeyron equation describing the coexistence curve of the Van der Waals (vdW) fluid is no longer valid; the heat capacity at constant pressure is finite at the critical point; the various exponents near the critical point are also different from those of the vdW fluid.  相似文献   

8.
We investigate the thermodynamic properties of 5D static and spherically symmetric black holes in (i) Einstein–Maxwell–Gauss–Bonnet theory, (ii) Einstein–Maxwell–Gauss–Bonnet theory with negative cosmological constant, and in (iii) Einstein–Yang–Mills–Gauss–Bonnet theory. To formulate the thermodynamics of these black holes we use the Bekenstein–Hawking entropy relation and, alternatively, a modified entropy formula which follows from the first law of thermodynamics of black holes. The results of both approaches are not equivalent. Using the formalism of geometrothermodynamics, we introduce in the manifold of equilibrium states a Legendre invariant metric for each black hole and for each thermodynamic approach, and show that the thermodynamic curvature diverges at those points where the temperature vanishes and the heat capacity diverges.  相似文献   

9.
We investigate the thermodynamical properties of charged torus-like black holes and take it as the working substance to study the heat engines. In the extended phase space, by interpreting the cosmological constant as the thermodynamic pressure, we derive the thermodynamical quantities by the first law of black hole thermodynamics and obtain the equation of state. Then, we calculate the efficiency of the heat engine in the Carnot cycle as well as the rectangular cycle,and investigate how the efficiency changes with respect to volume. In addition, to avoid a negative temperature, we emphasize that the charge of this black hole cannot be arbitrary. Last,we check the calculation accuracy of a benchmark scheme and discuss the upper bound and lower bound for charged torus-like black hole in the scheme.  相似文献   

10.
We study the black hole solution in Einstein-Maxwell-Gauss-Bonnet (EMGB) gravity theory with a cosmological constant in five dimension. It is a generalization of the Reissner-Nordström-de Sitter (RNdS) or RNAdS (Reissner-Nordström-Anti-de Sitter) black hole solutions (according as the cosmological constant is positive or negative) in the Einstein-Gauss-Bonnet (EGB) theory. We analyze the thermodynamic quantities of EMGB black hole and find a restriction involving the charge and the cosmological constant for the existence of an extremal black hole. Finally, Hawking-Page phase transition has been discussed for the present black hole.  相似文献   

11.
In this work we consider black hole solutions to Einstein's theory coupled to a nonlinear power-law electromagnetic field with a fixed exponent value. We study the extended phase space thermodynamics in canonical and grand canonical ensembles, where the varying cosmological constant plays the role of an effective thermodynamic pressure. We examine thermodynamical phase transitions in such black holes and find that both first- and second-order phase transitions can occur in the canonical ensemble while, for the grand canonical ensemble, Hawking–Page and second-order phase transitions are allowed.  相似文献   

12.
Motivated by providing preliminary steps to understand the conception of quantum gravity, in this paper, we study the phase structure of a semiclassical gravitational system. We investigate the stability conditions and phase transition of charged black holes in massive gravity via canonical ensemble and geometrical thermodynamic approaches. We point out the effects of massive parameter on stability conditions of these black holes and show how massive coefficients affect the phase transition points of these black holes. We also study the effects of boundary topology on thermodynamical behavior of the system. In addition, we give some arguments regarding the role of higher dimensions and highlight the effect of the electric charge in thermodynamical behavior. Then, we extend our study to geometrical thermodynamic approach and show that it can be a successful method for studying the black hole phase transition. At last, by employing the relation between thermodynamical pressure and cosmological constant, critical behavior of the system and the effects of different parameters on critical values are investigated.  相似文献   

13.
黄超光 《中国物理》1995,4(8):617-630
The charged static eylindrical black hole solution of the Einstein-Maxwell equations with negative cosmological constant is obtained. The properties of the solution are analyzed. The first law of thermodynamics for the cylindrical black hole is written down. Unlike the Reissner-Nordstr?m black hole, its heat capacity is always positive.  相似文献   

14.
We discuss the propagation of electromagnetic plane waves with negative phase velocity in regular black holes. For this purpose, we consider the Bardeen model as a nonlinear magnetic monopole and the Bardeen model coupled to nonlinear electrodynamics with a cosmological constant. It turns out that the region outside the event horizon of each regular black hole does not support negative phase velocity propagation, while its possibility in the region inside the event horizon is discussed.  相似文献   

15.
16.
Motivated by many worthwhile papers about (2+1)-dimensional BTZ black hole solutions, we generalize them to (n+1)-dimensional solutions, the so-called BTZ-like solutions. We show that the electric field of BTZ-like solutions is the same as that of (2+1)-dimensional BTZ black holes, and also their lapse functions are approximately the same, too. By these similarities, it is also interesting to investigate the geometric and thermodynamics properties of the BTZ-like solutions. We find that, depending on the metric parameters, the BTZ-like solutions may be interpreted as black hole solutions with inner (Cauchy) and outer (event) horizons, an extreme black hole or naked singularity. Then, we obtain the conserved and thermodynamic quantities, and we show that they satisfy the first law of thermodynamics. Next, we perform a thermodynamic stability analysis in the canonical ensemble and find that the BTZ-like solutions are stable in the whole phase space.  相似文献   

17.
There are exact solutions to Einstein’s equations with negative cosmological constant that represent black holes whose event horizons are manifolds of negative curvature, the so-called topological black holes. Among these solutions there is one, the massless topological black hole, whose mass is equal to zero. Hod proposes that in the semiclassical limit the asymptotic quasinormal frequencies determine the entropy spectrum of the black holes. Taking into account this proposal, we calculate the entropy spectrum of the massless topological black hole and we compare with the results on the entropy spectra of other topological black holes.  相似文献   

18.
We investigate extremal Reissner-Nordström-AdS black holes in fourdimensional \( \mathcal{N} = 2 \) abelian gauged supergravity. We find a new attractor equation which is not reduced to the one in the asymptotically flat spacetime. We also argue a formula which is available even in the presence of the scalar potential. We apply them to the T3-model and the STU-model in generic black hole charge distributions. In addition, focusing on the so-called T3-model with a single neutral vector multiplet, we obtain non-supersymmetric extremal Reissner-Nordström-AdS black hole solutions with regular event horizons in the D0-D4 and the D2-D6 black hole charge configurations. The negative cosmological constant emerges even without the Fayet-Iliopoulos parameters.  相似文献   

19.
The Einstein equations with a negative cosmological constant admit black hole solutions which are asymptotic to anti-de Sitter space. Like black holes in asymptotically flat space, these solutions have thermodynamic properties including a characteristic temperature and an intrinsic entropy equal to one quarter of the area of the event horizon in Planck units. There are however some important differences from the asymptotically flat case. A black hole in anti-de Sitter space has a minimum temperature which occurs when its size is of the order of the characteristic radius of the anti-de Sitter space. For larger black holes the red-shifted temperature measured at infinity is greater. This means that such black holes have positive specific heat and can be in stable equilibrium with thermal radiation at a fixed temperature. It also implies that the canonical ensemble exists for asymptotically anti-de Sitter space, unlike the case for asymptotically flat space. One can also consider the microcanonical ensemble. One can avoid the problem that arises in asymptotically flat space of having to put the system in a box with unphysical perfectly reflecting walls because the gravitational potential of anti-de Sitter space acts as a box of finite volume.  相似文献   

20.
We approach the thermodynamic properties of the d-dimensional RN black holes, discuss the three expressions for the first law of thermodynamics for black holes and calculate the energies in the three regions of the black hole spacetimes. Some remarks of the first law of thermodynamics and the thermal properties for the black holes are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号