首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A palladium‐catalyzed enantioselective C H functionalization of indoles was achieved with an axially chiral 2,2′‐bipyridine ligand, thus providing the desired indol‐3‐acetate derivatives with up to 98 % ee. Moreover, the reaction protocol was also effective for asymmetric O H insertion reaction of phenols using α‐aryl‐α‐diazoacetates. This represents the first successful application of bipyridine ligands with axial chirality in palladium‐catalyzed carbene migratory insertion reactions.  相似文献   

2.
A palladium‐catalyzed enantioselective C H functionalization of indoles was achieved with an axially chiral 2,2′‐bipyridine ligand, thus providing the desired indol‐3‐acetate derivatives with up to 98 % ee. Moreover, the reaction protocol was also effective for asymmetric O H insertion reaction of phenols using α‐aryl‐α‐diazoacetates. This represents the first successful application of bipyridine ligands with axial chirality in palladium‐catalyzed carbene migratory insertion reactions.  相似文献   

3.
A highly enantioselective synthesis of α‐hydroxyphosphinates was achieved based on the L ‐proline‐catalyzed aldol reaction of α‐acylphosphinates and acetone. Due to the preexisting chirality at the phosphorus center, mixtures of two diastereomers of the α‐hydroxyphosphinates were obtained in moderate to good yields, with simultaneously high enantioselectivity for both diastereomers. The products could be converted into α‐hydroxy‐H‐phosphinates with satisfactory yields. Furthermore, an unprecedented oxidation–reduction reaction of the α‐hydroxyphosphinates or α‐hydroxy‐H‐phosphinates to form phosphonates was observed, and the mechanism involved in such a chemical transformation is discussed.  相似文献   

4.
A new, easy, and highly enantioselective method for the synthesis of quaternary α‐alkyl‐α‐amino acids based on organocatalysis is reported. The addition of oxazolones to 1,1‐bis(phenylsulfonyl)ethylene is efficiently catalyzed by simple chiral bases or thioureas. The reaction affords α,α‐disubstituted α‐amino acid derivatives with complete C4 regioselectivity and with excellent yields and enantioselectivities. This methodology is complementary to previously reported enantioselective approaches to quaternary α‐amino acids and allows the synthesis of α‐phenyl‐α‐alkyl‐α‐amino acids and α‐tert‐butyl‐α‐alkyl‐α‐amino acids. It has distinct advantages in terms of operational simplicity, enviromentally friendly conditions, and suitability for large‐scale reactions.  相似文献   

5.
We describe enantioselective syntheses of strychnos and chelidonium alkaloids. In the first case, indole acetic acid esters were established as excellent partner nucleophiles for enantioselective cooperative isothiourea/Pd catalyzed α‐alkylation. This provides products containing indole‐bearing stereocenters in high yield and with excellent levels of enantioinduction in a manner that is notably independent of the N‐substituent. This led to concise syntheses of (?)‐akuammicine and (?)‐strychnine. In the second case, the poor performance of ortho‐substituted cinnamyl electrophiles in the enantioselective cooperative isothiourea/Ir catalyzed α‐alkylation was overcome by appropriate substituent choice, leading to enantioselective syntheses of (+)‐chelidonine, (+)‐norchelidonine, and (+)‐chelamine.  相似文献   

6.
The first examples of diastereo‐ and enantioselective carbonyl α‐(cyclopropyl)allylation are reported. Under the conditions of iridium catalyzed transfer hydrogenation using the chiral precatalyst (R)‐Ir‐ I modified by SEGPHOS, carbonyl α‐(cyclopropyl)allylation may be achieved with equal facility from alcohol or aldehyde oxidation levels. This methodology provides a conduit to hitherto inaccessible inaccessible enantiomerically enriched cyclopropane‐containing architectures.  相似文献   

7.
The first enantioselective synthesis of (?)‐pallavicinin and (+)‐neopallavicinin has been achieved in 15 steps. The described synthesis avoids protecting‐group manipulations by synthesis designs predicated on highly chemo‐ and stereoselective transformations. Highlights of the synthesis include a palladium‐catalyzed enantioselective decarboxylative allylation to form the chiral all‐carbon quaternary stereocenter, a palladium‐catalyzed oxidative cyclization to assemble the [3.2.1]‐bicyclic moiety, and an unprecedented LiBHEt3‐induced fragmentation/protonation of an α‐hydroxy epoxide to form the α‐furan ketone with the desired configuration.  相似文献   

8.
Nucleophile–nucleophile coupling is a challenging transformation in organic chemistry. Herein we present a novel umpolung strategy for α‐functionalization of aldehydes with nucleophiles. The strategy uses organocatalytic enamine activation and quinone‐promoted oxidation to access O‐bound quinol‐intermediates that undergo nucleophilic substitution reactions. These quinol‐intermediates react with different classes of nucleophiles. The focus is on an unprecedented organocatalytic oxidative α‐thiolation of aldehydes. The reaction scope is demonstrated for a broad range of thiols and extended to chemoselective bioconjugation, and applicable to a large variety of aldehydes. This strategy can also encompass organocatalytic enantioselective coupling of α‐branched aldehydes with thiols forming quaternary thioethers. Studies indicate a stereoselective formation of the intermediate followed by a stereospecific nucleophilic substitution reaction at a quaternary stereocenter, with inversion of configuration.  相似文献   

9.
We describe the development of a Pd‐catalyzed decarboxylative asymmetric allylic alkylation of α‐nitro allyl esters to afford acyclic tetrasubstituted nitroalkanes. Optimization of the reaction parameters revealed unique ligand and solvent combinations crucial for achieving chemo‐ and enantioselective C‐alkylation of electronically challenging benzylic nitronates and sterically encumbered 2‐allyl esters. Substrates were efficiently accessed in a combinatorial fashion by a cross‐Claisen/ α‐arylation sequence. The method provides functional group orthogonality that complements nucleophilic imine allylation strategies for α‐tertiary amine synthesis.  相似文献   

10.
An inexpensive copper‐catalyzed cascade regioselective alkylation, followed by cyclocondensation of quinoline N‐oxides with α‐diazo esters has been achieved successfully to provide heteroarene‐containing conjugated π‐systems. The developed method is simple, straightforward, and economical with a broad range of substrate scope. The dual role of copper catalyst in the C?H bond functionalization and in Lewis acid‐promoted cyclization was explored.  相似文献   

11.
A practical copper‐catalyzed direct oxidative cyclopropanation of electron‐deficient alkenes with acetophenone derivatives is reported. The dehydrogenative annulation involves a double C? H bond functionalization at the α‐position of the ketone using di‐tert‐butyl peroxide as oxidant. The broad scope of the reaction and excellent functional‐group tolerance is demonstrated for the stereoselective synthesis of fused cyclopropanes. The developed transformation revealed an unprecedented reactivity for copper‐catalyzed processes.  相似文献   

12.
A rhodium‐Josiphos(L*) catalyzed enantioselective intramolecular hydroarylation reaction is described. The reductive cyclization of o ‐bromoaniline‐derived acrylamides provides convenient access to 3,3‐disubstituted oxindoles in good yields and with excellent enantioselectivity across a range of substrates. We propose that the key cyclization proceeds via a rhodium(III) intermediate. Overall, this method represents an unusual mode of reactivity for rhodium catalysis and is complementary to palladium(0)‐catalyzed α‐arylation methods.  相似文献   

13.
The catalytic asymmetric synthesis of both α‐substituted and α,α‐disubstituted (quaternary) β‐tetralones through direct α‐functionalization of the corresponding β‐tetralone precursor remains elusive. A designed Brønsted base‐squaramide bifunctional catalyst promotes the conjugate addition of either unsubstituted or α‐monosubstituted β‐tetralones to nitroalkenes. Under these reaction conditions, not only enolization, and thus functionalization, occurs at the α‐carbon atom of the β‐tetralone exclusively, but adducts including all‐carbon quaternary centers are also formed in highly diastereo‐ and enantioselective manner.  相似文献   

14.
Chiral rhodium(I)‐catalyzed highly enantioselective arylation of aliphatic N‐sulfonyl aldimines with arylboronic acids has been developed. This transformation is achieved by the use of a rhodium/bis(phosphoramidite) catalyst to give enantiomerically enriched α‐branched amines (up to 99 % ee). In addition, this system enables efficient synthesis of (+)‐NPS R‐568 and Cinacalcet which are calcimimetic agents.  相似文献   

15.
The enantioselective formation of α‐aryloxy‐β‐keto esters is described for the first time. Lewis acid catalyzed enantioselective chlorination of β‐keto esters and subsequent SN2 reactions with phenols yielded α‐aryloxy‐β‐keto esters with up to 96 % ee. Favorskii rearrangement of α‐chloro‐β‐keto esters was also found to give 1,2‐diesters with slightly reduced enantiopurity.  相似文献   

16.
Highly enantioselective rhodium‐catalyzed addition of arylboroxines to N‐unprotected ketimines is realized for the first time by employing chiral BIBOP‐type ligands with a Rh loading as low as 1 mol %. A range of chiral α‐trifluoromethyl‐α,α‐diaryl α‐tertiary amines or 3‐amino‐3‐aryloxindoles were formed with excellent ee values and yields by employing either WingPhos or PFBO‐BIBOP as the ligand. The method has enabled an efficient enantioselective synthesis of cipargamin.  相似文献   

17.
Reported herein is a visible‐light‐mediated radical approach to the α‐alkylation of ketones. This method exploits the ability of a nucleophilic organocatalyst to generate radicals upon SN2‐based activation of alkyl halides and blue light irradiation. The resulting open‐shell intermediates are then intercepted by weakly nucleophilic silyl enol ethers, which would be unable to directly attack the alkyl halides through a traditional two‐electron path. The mild reaction conditions allowed functionalization of the α position of ketones with functional groups that are not compatible with classical anionic strategies. In addition, the redox‐neutral nature of this process makes it compatible with a cinchona‐based primary amine catalyst, which was used to develop a rare example of enantioselective organocatalytic radical α‐alkylation of ketones.  相似文献   

18.
Ni0‐catalyzed chemo‐ and enantioselective [3+2] cycloaddition of cyclopropenones and α,β‐unsaturated ketones/imines is described. This reaction integrates C?C bond cleavage of cyclopropenones and enantioselective functionalization by carbonyl/imine group, offering a mild approach to γ‐alkenyl butenolides and lactams in excellent enantioselectivity (88–98 % ee) through intermolecular C?C activation.  相似文献   

19.
A general and efficient method for the highly enantioselective alkynylation of ketoimines through a zinc/1,1′‐bi‐2‐naphthol (BINOL)‐catalyzed process has been developed. A variety of ketoimines, including α‐fluoroalkyl α‐imine esters, α‐aryl α‐imine esters, and trifluoromethyl aryl ketoimines, are applicable and provide their corresponding quaternary propargyl amines in excellent yields with high ee values (up to 99 % ee). Both the steric and electronic effects of substituents at the 3,3′ positions of BINOL are critical for the reaction efficiency and enantioselectivity. To demonstrate the usefulness of the method, (R)‐α‐CF3 α‐proline has been prepared in a highly efficient manner. The notable features of this protocol are its broad substrate scope, high reaction efficiency (up to 99 %) and enantioselectivity (up to 99 % ee), low catalyst loading (5 mol % of BINOL derivative), and mild reaction conditions.  相似文献   

20.
Highly enantioselective Diels–Alder (DA) and inverse‐electron‐demand hetero‐Diels–Alder (HDA) reactions of β,γ‐unsaturated α‐ketoesters with cyclopentadiene catalyzed by chiral N,N′‐dioxide–Cu(OTf)2 (Tf=triflate) complexes have been developed. Quantitative conversion of β,γ‐unsaturated α‐ketoesters and excellent diastereoselectivities (up to 99:1) and enantioselectivities (up to >99 % ee) were observed for a broad range of substrates. Both aromatic and aliphatic β,γ‐unsaturated α‐ketoesters were found to be suitable substrates for the reactions. Moreover, the chemoselectivity of the DA and HDA adducts were improved by regulating the reaction temperature. Good to high chemoselectivity (up to 94 %) of the DA adducts were obtained at room temperature, and moderate chemoselectivity (up to 65 %) of the HDA adducts were achieved at low temperature. The reaction also featured mild reaction conditions, a simple procedure, and remarkably low catalyst loading (0.1–1.5 mol %). A strong positive nonlinear effect was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号