首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
We report the design, synthesis, and application of a (N^C^C)‐ligand framework able to stabilize highly electron‐deprived gold(III) species. This novel platform enabled the preparation of C(sp2)‐gold(III) fluorides for the first time in monomeric, easy‐to‐handle, bench‐stable form by a Cl/F ligand‐exchange reaction. Devoid of oxidative conditions or stoichiometric use of toxic Hg salts, this method was applied to the preparation of multiple [C(sp2)‐AuIII‐F] complexes, which were used as mechanistic probes for the study of the unique properties and intrinsic reactivity of Au? F bonds. The improved photophysical properties of [(N^C^C)AuIII] complexes compared to classical pincer (C^N^C)‐Au systems paves the way for the design of new late‐transition‐metal‐based OLEDs.  相似文献   

2.
Identification of the molecular target(s) of anticancer metal complexes is a formidable challenge since most of them are unstable toward ligand exchange reaction(s) or biological reduction under physiological conditions. Gold(III) meso‐tetraphenylporphyrin ( gold‐1 a ) is notable for its high stability in biological milieux and potent in vitro and in vivo anticancer activities. Herein, extensive chemical biology approaches employing photo‐affinity labeling, click chemistry, chemical proteomics, cellular thermal shift, saturation‐transfer difference NMR, protein fluorescence quenching, and protein chaperone assays were used to provide compelling evidence that heat‐shock protein 60 (Hsp60), a mitochondrial chaperone and potential anticancer target, is a direct target of gold‐1 a in vitro and in cells. Structure–activity studies with a panel of non‐porphyrin gold(III) complexes and other metalloporphyrins revealed that Hsp60 inhibition is specifically dependent on both the gold(III) ion and the porphyrin ligand.  相似文献   

3.
The chemistry of gold strongly focuses on the ubiquitous oxidation states +I and +III. The intermediate oxidation state +II is generally avoided in mononuclear gold species. In recent years, gold(II) has been increasingly suggested as a key intermediate in artificial photosynthesis systems, with gold(III) moieties acting as electron acceptors, as well as in gold‐catalyzed photoredox catalysis and radical chemistry. This Minireview provides a concise summary of confirmed and characterized mononuclear open‐shell gold(II) complexes. Recent findings on structural motifs and reactivity patterns will be discussed. Exciting developments in the fields of photosynthesis, photocatalysis, and potential roles in medicinal chemistry will be outlined.  相似文献   

4.
This Review showcases the ability of bi‐ and tridentate ligands to stabilize gold in high oxidation states through the formation of mono‐ and biscyclometalated gold(III) complexes. In‐depth studies on the synthesis, intrinsic reactivity, catalytic relevance, and photophysical properties of stabilized gold(III) species have been carried out, setting the stage for exciting developments in various research areas, such as catalysis, inorganic and bioinorganic chemistry, ligand design, and materials science.  相似文献   

5.
In the design of physiologically stable anticancer gold(III) complexes, we have employed strongly chelating porphyrinato ligands to stabilize a gold(III) ion [Chem. Commun. 2003 , 1718; Coord. Chem. Rev. 2009 , 253, 1682]. In this work, a family of gold(III) tetraarylporphyrins with porphyrinato ligands containing different peripheral substituents on the meso‐aryl rings were prepared, and these complexes were used to study the structure–bioactivity relationship. The cytotoxic IC50 values of [Au(Por)]+ (Por=porphyrinato ligand), which range from 0.033 to >100 μM , correlate with their lipophilicity and cellular uptake. Some of them induce apoptosis and display preferential cytotoxicity toward cancer cells than to normal noncancerous cells. A new gold(III)–porphyrin with saccharide conjugation [Au(4‐glucosyl‐TPP)]Cl ( 2 a ; H2(4‐glucosyl‐TPP)=meso‐tetrakis(4‐β‐D ‐glucosylphenyl)porphyrin) exhibits significant cytostatic activity to cancer cells (IC50=1.2–9.0 μM ) without causing cell death and is much less toxic to lung fibroblast cells (IC50>100 μM ). The gold(III)–porphyrin complexes induce S‐phase cell‐cycle arrest of cancer cells as indicated by flow cytometric analysis, suggesting that the anticancer activity may be, in part, due to termination of DNA replication. The gold(III)–porphyrin complexes can bind to DNA in vitro with binding constants in the range of 4.9×105 to 4.1×106 dm3 mol?1 as determined by absorption titration. Complexes 2 a and [Au(TMPyP)]Cl5 ( 4 a ; [H2TMPyP]4+=meso‐tetrakis(N‐methylpyridinium‐4‐yl)porphyrin) interact with DNA in a manner similar to the DNA intercalator ethidium bromide as revealed by gel mobility shift assays and viscosity measurements. Both of them also inhibited the topoisomerase I induced relaxation of supercoiled DNA. Complex 4 a , a gold(III) derivative of the known G‐quadruplex‐interactive porphyrin [H2TMPyP]4+, can similarly inhibit the amplification of a DNA substrate containing G‐quadruplex structures in a polymerase chain reaction stop assay. In contrast to these reported complexes, complex 2 a and the parental gold(III)–porphyrin 1 a do not display a significant inhibitory effect (<10 %) on telomerase. Based on the results of protein expression analysis and computational docking experiments, the anti‐apoptotic bcl‐2 protein is a potential target for those gold(III)–porphyrin complexes with apoptosis‐inducing properties. Complex 2 a also displays prominent anti‐angiogenic properties in vitro. Taken together, the enhanced stabilization of the gold(III) ion and the ease of structural modification render porphyrins an attractive ligand system in the development of physiologically stable gold(III) complexes with anticancer and anti‐angiogenic activities.  相似文献   

6.
Phosphorescent mono-cyclometalated gold(III) complexes and their possible applications in organic light emitting diodes (OLEDs) can be significantly enhanced with their improved thermal stability by suppressing the reductive elimination of the respective ancillary ligands. A rational tuning of the π-conjugation of the cyclometalating ligand in conjunction with the non-conjugated 5,5′-(1-methylethylidene)bis(3-trifluoromethyl)-1H-pyrazole were used as a strategy to achieve room-temperature phosphorescence emission in a new series of gold(III) complexes. Photophysical studies of the newly synthesised and characterised complexes revealed phosphorescent emission of the complexes at room temperature in solution, thin films when doped in poly(methyl methacrylate) (PMMA) as well as in 2-Me-THF at 77 K. The complexes exhibit highly tuneable emission behaviour with photoluminescent quantum efficiencies up to 22 % and excited state lifetimes in the range of 63–300 μs. Detailed photophysical investigations in combination with DFT and TD-DFT calculations support the conclusion that the emission properties are strongly dictated by both the cyclometalating ligand and the ancillary chelating ligand. Thermogravimetric studies further show that the thermal stability of the AuIII complexes has been drastically enhanced, making these complexes more attractive for OLED applications.  相似文献   

7.
The first catalytic application of well‐defined (P,C) cyclometalated gold(III) complexes is reported. The bench‐stable bis(trifluoroacetyl) complexes 2 a , b perform very well in the intermolecular hydroarylation of alkynes. The reaction is broad in scope, it proceeds within few hours at 25 °C at catalytic loadings of 0.1–5 mol %. The electron‐rich arene adds across the C≡C bond with complete regio‐ and stereo‐selectivity. The significance of well‐defined gold(III) complexes and ligand design are highlighted in a powerful but challenging catalytic transformation.  相似文献   

8.
N-Heterocyclic carbene (NHC) cyclometalated gold(III) complexes remain very scarce and therefore their photophysical properties remain currently underexplored. Moreover, gold(III) complexes emitting in the blue region of the electromagnetic spectrum are rare. In this work, a series of four phosphorescent gold(III) complexes was investigated bearing four different NHC monocyclometalated (C^C*)-type ligands and a dianionic (N^N)-type ancillary ligand ((N^N)=5,5’-(propane-2,2-diyl)bis(3-(trifluoromethyl)-1 H-pyrazole) (mepzH2)). The complexes exhibit strong phosphorescence when doped in poly(methyl methacrylate) (PMMA) at room temperature, which were systematically tuned from sky-blue [λPL=456 nm, CIE coordinates: (0.20, 034)] to green [λPL=516 nm, CIE coordinates: (0.31, 0.54)] by varying the monocyclometalated (C^C*) ligand framework. The complexes revealed high quantum efficiencies (ϕPL) of up to 43 % and excited-state lifetimes (τ0) between 15–266 μs. The radiative rate constant values found for these complexes (kr=103–104 s−1) are the highest found in comparison to previously known best-performing monocyclometalated gold(III) complexes. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations of these complexes further lend support to the excited-state nature of these complexes. The calculations showed a significant contribution of the gold(III) metal center in the lowest unoccupied molecular orbitals (LUMOs) of up to 18 %, which was found to be unique for this class of cyclometalated gold(III) complexes. Additionally, organic light-emitting diodes (OLEDs) were fabricated by using a solution process to provide the first insight into the electroluminescent (EL) properties of this new class of gold(III) complexes.  相似文献   

9.
The gas‐phase bond‐dissociation energies of a SO2–imidazolylidene leaving group of three gold(I) benzyl imidazolium sulfone complexes are reported (E0=46.6±1.7, 49.6±1.7, and 48.9±2.1 kcal mol?1). Although these energies are similar to each other, they are reproducibly distinguishable. The energy‐resolved collision‐induced dissociation experiments of the three [L]–gold(I) (L=ligand) carbene precursor complexes were performed by using a modified tandem mass spectrometer. The measurements quantitatively describe the structural and electronic effects a p‐methoxy substituent on the benzyl fragment, and trans [NHC] and [P] gold ligands, have towards gold carbene formation. Evidence for the formation of the electrophilic gold carbene in solution was obtained through the stoichiometric and catalytic cyclopropanation of olefins under thermal conditions. The observed cyclopropane yields are dependent on the rate of gold carbene formation, which in turn is influenced by the ligand and substituent. The donation of electron density to the carbene carbon by the p‐methoxy benzyl substituent and [NHC] ligand stabilizes the gold carbene intermediate and lowers the dissociation barrier. Through the careful comparison of gas‐phase and solution chemistry, the results suggest that even gas‐phase leaving‐group bond‐dissociation energy differences of 2–3 kcal mol?1 enormously affect the rate of gold carbene formation in solution, especially when there are competing reactions. The thermal decay of the gold carbene precursor complex was observed to follow first‐order kinetics, whereas cyclopropanation was found to follow pseudo‐first‐order kinetics. Density‐functional‐theory calculations at the M06‐L and BP86‐D3 levels of theory were used to confirm the observed gas‐phase reactivity and model the measured bond‐dissociation energies.  相似文献   

10.
Unprecedented stable BINOL/gold(III) complexes, adopting a novel C,O‐chelation mode, were synthesized by a modular approach through combination of 1,1′‐binaphthalene‐2,2′‐diols (BINOLs) and cyclometalated gold(III) dichloride complexes [(C^N)AuCl2]. X‐ray crystallographic analysis revealed that the bidentate BINOL ligands tautomerized and bonded to the AuIII atom through C,O‐chelation to form a five‐membered ring instead of the conventional O,O′‐chelation giving a seven‐membered ring. These gold(III) complexes catalyzed acetalization/cycloisomerization and carboalkoxylation of ortho ‐alkynylbenzaldehydes with trialkyl orthoformates.  相似文献   

11.
Gold(I) dicarbene complexes [Au2(MeIm‐Y‐ImMe)2](PF6)2 (Y=CH2 ( 1 ), (CH2)2 ( 2 ), (CH2)4 ( 4 ), MeIm=1‐methylimidazol‐2‐ylidene) react with iodine to give the mixed‐valence complex [Au(MeIm‐CH2‐ImMe)2AuI2](PF6)2 ( 1 aI ) and the gold(III) complexes [Au2I4(MeIm‐Y‐ImMe)2](PF6)2 ( 2 cI and 4 cI ). Reaction of complexes 1 and 2 with an excess of ICl allows the isolation of the tetrachloro gold(III) complexes [Au2Cl4(MeIm‐CH2‐ImMe)2](PF6)2 ( 1 cCl ) and [Au2Cl4(MeIm‐(CH2)2‐ImMe)2](Cl)2 ( 2 cCl‐Cl ) (as main product); remarkably in the case of complex 2 , the X‐ray molecular structure of the crystals also shows the presence of I‐Au‐Cl mixed‐sphere coordination. The same type of coordination has been observed in the main product of the reaction of complexes 3 or 4 with ICl. The study of the reactivity towards the oxidative addition of halogens to a large series of dinuclear bis(dicarbene) gold(I) complexes has been extended and reviewed. The complexes react with Cl2, Br2 and I2 to give the successive formation of the mixed‐valence gold(I)/gold(III) n aX and gold(III) n cX (excluding compound 1 cI ) complexes. However, complex 3 affords with Cl2 and Br2 the gold(II) complex 3 bX [Au2X2(MeIm‐(CH2)3‐ImMe)2](PF6)2 (X=Cl, Br), which is the predominant species over compound 3 cX even in the presence of free halogen. The observed different relative stabilities of the oxidised complexes of compounds 1 and 3 have also been confirmed by DFT calculations.  相似文献   

12.
The interaction of gold(III) complexes, [Au(cis‐DACH)Cl2]Cl and [Au(cis‐DACH)2]Cl3 complexes (DACH = cis‐1,2‐diaminocyclohexane), with 13C, 15N‐enriched thiourea (Tu) and 1,3‐diazinane‐2‐thione ligands was investigated. The progress of these reactions was monitored by NMR (1H, 13C, and 15N) and UV–vis spectroscopy as well as square wave stripping voltammetry. The kinetic studies of the substitution reactions between the above‐mentioned complexes with thiones in aqueous solutions containing 30 mM KCl, which is used to suppress the hydrolysis of the chloride complexes, were conducted. These reactions were followed under pseudo–first‐order conditions as functions of ligand concentration, pH, and temperature. The activation parameters (ΔH#, ΔS#) were calculated from Eyring plots, and the negative values of ΔS lend support for an associative mechanism. The kinetic data also indicated a relatively higher reactivity of [Au(cis‐DACH)Cl2]Cl than that of [Au(cis‐DACH)2]Cl3 toward the thiones.  相似文献   

13.
Structurally robust tetradentate gold(III)‐emitters have potent material applications but are rare and unprecedented for those displaying thermally activated delayed fluorescence (TADF). Herein, a novel synthetic route leading to the preparation of highly emissive, charge‐neutral tetradentate [C^C^N^C] gold(III) complexes with 5‐5‐6‐membered chelate rings has been developed through microwave‐assisted C?H bond activation. These complexes show high thermal stability and with emission origin (3IL, 3ILCT, and TADF) tuned by varying the substituents of the C^C^N^C ligand. With phenoxazine/diphenylamine substituent, we prepared the first tetradentate gold(III) complexes that are TADF emitters with emission quantum yields of up to 94 % and emission lifetimes of down to 0.62 μs in deoxygenated toluene. These tetradentate AuIII TADF emitters showed good performance in vacuum‐deposited OLEDs with maximum EQEs of up to 25 % and LT95 of up to 5280 h at 100 cd m?2.  相似文献   

14.
The reaction of p‐benziporphyrin, sodium tetrachloroaurate(III) dihydrate, and potassium carbonate in dichloromethane yielded gold(III) 5,10,15,20‐tetraaryl‐21‐carbaporphyrin owing to the contraction of p‐phenylene to cyclopentadiene. This molecule is the very first representative of a true 5,10,15,20‐tetraaryl‐21‐carbaporphyrin complex where four trigonal donor atoms are involved in equatorial coordination. The contraction adds an unprecedented route to numerous organic transformations of aromatic compounds catalyzed by simple gold(III) compounds. p‐Benziporphyrin provided the unique environment to alter the fundamental reactivity of the benzene unit facilitating its contraction to cyclopentadiene.  相似文献   

15.
The synthesis of air‐ and moisture‐stable trinuclear mixed‐valence gold(I)/gold(0) clusters is described. They promote the catalytic carbonylation of amines under relatively mild conditions. The synthetic route leading to the trinuclear clusters involves a simple ligand exchange from the readily available μ3‐oxo‐[(Ph3PAu)3O]+ complex. This synthetic method paves the way for the preparation of a variety of mixed‐valence gold(I)/gold(0) polynuclear clusters. Moreover, the well‐defined nature of the complexes demonstrates that the catalytic process involves a rare example of a definite change of oxidation state of gold from Au02AuI to AuI3.  相似文献   

16.
Heteroarylation of alkenes with aryl iodides was efficiently achieved with a (MeDalphos)AuCl complex through AuI/AuIII catalysis. The possibility to combine oxidative addition of aryl iodides and π‐activation of alkenes at gold is demonstrated for the first time. The reaction is robust and general (>30 examples including internal alkenes, 5‐, 6‐, and 7‐membered rings). It is regioselective and leads exclusively to trans addition products. The (P,N) gold complex is most efficient with electron‐rich aryl substrates, which are troublesome with alternative photoredox/oxidative approaches. In addition, it provides a very unusual switch in regioselectivity from 5‐exo to 6‐endo cyclization between the Z and E isomers of internal alkenols.  相似文献   

17.
Gold(II) complexes are rare, and their application to the catalysis of chemical transformations is underexplored. The reason is their easy oxidation or reduction to more stable gold(III) or gold(I) complexes, respectively. We explored the thermodynamics of the formation of [AuII(L)(X)]+ complexes (L=ligand, X=halogen) from the corresponding gold(III) precursors and investigated their stability and spectral properties in the IR and visible range in the gas phase. The results show that the best ancillary ligands L for stabilizing gaseous [AuII(L)(X)]+ complexes are bidentate and tridentate ligands with nitrogen donor atoms. The electronic structure and spectral properties of the investigated gold(II) complexes were correlated with quantum chemical calculations. The results show that the molecular and electronic structure of the gold(II) complexes as well as their spectroscopic properties are very similar to those of analogous stable copper(II) complexes.  相似文献   

18.
Highly tunable and rich phosphorescent emission properties based on the stable monocyclometalated gold(III) monoaryl structural motif are reported. Monochloro complexes of the type cis‐[(N^C)Au(C6H2(CF3)3)(Cl)] N^C=2‐phenylpyridine (ppy)] ( 1 ), [N^C=benzo[h]quinoline (bzq)] ( 2 ), [N^C=2‐(5‐Methyl‐2‐thienyl)pyridine (5m‐thpy)] ( 3 ) were successfully prepared in modest to good yields by reacting an excess of 2, 4, 6‐tris(trifluoromethyl)phenyl lithium (LiFmes) with the corresponding dichloride complexes cis‐[(N^C)AuCl2]. Subsequent replacement of the chloride ligand in 1 with strong ligand field strength such as cyanide and terminal alkynes resulted in complexes of the type cis‐[(ppy)Au(Fmes)(R)] R=CN ( 4 ), I ( 5 ), C?C?C6H5 ( 6 ) and C?C?C6H4N(C6H5)‐p ( 7 ). Single crystal X‐ray diffraction studies of all the complexes except 7 were performed to further corroborate their chemical identity. Thermogravimetric analysis (TGA) studies of the uncommon cis configured aryl alkyne complex 7 confirmed the high stability of this complex. Detailed photophysical investigations carried out in solution at room temperature, at 77 K (2‐MeTHF) in rigidified media, solid state and 5 wt % PMMA revealed the phosphorescent nature of emission in these complexes. Additionally, their behavior was found to be governed based on both the nature of the cyclometalated ligand and the electronic properties of the ancillary ligands. Highly efficient interligand charge transfer in complex 7 provides access to a wide range of emission colors (solvent‐dependent) from deep blue to red with phosphorescence emission quantum yield of 30 % (441 nm) and 39 % (622 nm) in solution and solid state, respectively, and is the highest reported for any AuIII complexes. DFT and TDDFT calculations carried out further validated the observations and assignments based on the photophysical experimental findings.  相似文献   

19.
Highly efficient sky-blue luminescent gold(III) complexes with emission quantum yields up to 82 %, lifetimes down to 0.67 μs and emission peak maxima at 470–484 nm were prepared through a consideration of pincer gold(III) donor–acceptor complexes. Photophysical studies and time-dependent density functional theory (TDDFT) calculations revealed that the emission nature of these gold(III) complexes is most consistent with TADF. Solution-processed OLEDs with these gold(III) complexes as dopants afforded electroluminescence maxima at 465–473 nm with FWHM of 64–67 nm and maximum external quantum efficiencies (EQEs) of up to 15.25 %. This research demonstrates the first example of gold(III)-OLEDs showing electroluminescence maxima at smaller than 470 nm, and highlights the potential of using gold(III)-TADF emitters in the development of high efficiency blue OLEDs and blue emissive dopant in WOLEDs.  相似文献   

20.
A series of novel benzo[b]phosphole alkynylgold(I) complexes has been demonstrated to display photochromic and mechanochromic properties upon applying the respective stimuli of light and mechanical force. Promising multistimuli‐responsive properties of this series of gold(I) complexes have been successfully achieved through judicious molecular design, which involves incorporation of the photochromic dithienylethene‐containing benzo[b]phosphole into the triphenylamine‐containing arylethynyl ligand that is susceptible to mechanical force‐induced color changes via gold(I) complexation. With excellent thermal irreversibility and robust fatigue resistance of this series of gold(I) complexes, multicolor states controlled by the photochromism and mechanochromism have been realized. Repeatable photochromic and mechanochromic cycles without apparent loss of reactivity have also been observed under ambient conditions. The present work provides important insight and an alternative strategy for the molecular design of multistimuli‐responsive materials, paving the way for further development of the underexplored photoresponsive gold(I) complexes and the multistate photocontrolled system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号