首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The complexes [Pt(tBu3tpy){C?C(C6H4C?C)n?1R}]+ (n=1: R=alkyl and aryl (Ar); n=1–3: R=phenyl (Ph) or Ph‐N(CH3)2‐4; n=1 and 2, R=Ph‐NH2‐4; tBu3tpy=4,4’,4’’‐tri‐tert‐butyl‐2,2’:6’,2’’‐terpyridine) and [Pt(Cl3tpy)(C?CR)]+ (R=tert‐butyl (tBu), Ph, 9,9’‐dibutylfluorene, 9,9’‐dibutyl‐7‐dimethyl‐amine‐fluorene; Cl3tpy=4,4’,4’’‐trichloro‐2,2’:6’,2’’‐terpyridine) were prepared. The effects of substituent(s) on the terpyridine (tpy) and acetylide ligands and chain length of arylacetylide ligands on the absorption and emission spectra were examined. Resonance Raman (RR) spectra of [Pt(tBu3tpy)(C?CR)]+ (R=n‐butyl, Ph, and C6H4‐OCH3‐4) obtained in acetonitrile at 298 K reveal that the structural distortion of the C?C bond in the electronic excited state obtained by 502.9 nm excitation is substantially larger than that obtained by 416 nm excitation. Density functional theory (DFT) and time‐dependent DFT (TDDFT) calculations on [Pt(H3tpy)(C?CR)]+ (R= n‐propyl (nPr), 2‐pyridyl (Py)), [Pt(H3tpy){C?C(C6H4C?C)n?1Ph}]+ (n=1–3), and [Pt(H3tpy){C?C(C6H4C?C)n?1C6H4‐N(CH3)2‐4}]+/+H+ (n=1–3; H3tpy=nonsubstituted terpyridine) at two different conformations were performed, namely, with the phenyl rings of the arylacetylide ligands coplanar (“cop”) with and perpendicular (“per”) to the H3tpy ligand. Combining the experimental data and calculated results, the two lowest energy absorption peak maxima, λ1 and λ2, of [Pt(Y3tpy)(C?CR)]+ (Y=tBu or Cl, R=aryl) are attributed to 1[π(C?CR)→π*(Y3tpy)] in the “cop” conformation and mixed 1[dπ(Pt)→π*(Y3tpy)]/1[π(C?CR)→π*(Y3tpy)] transitions in the “per” conformation. The lowest energy absorption peak λ1 for [Pt(tBu3tpy){C?C(C6H4C?C)n?1C6H4‐H‐4}]+ (n=1–3) shows a redshift with increasing chain length. However, for [Pt(tBu3tpy){C?C(C6H4C?C)n?1C6H4‐N(CH3)2‐4}]+ (n=1–3), λ1 shows a blueshift with increasing chain length n, but shows a redshift after the addition of acid. The emissions of [Pt(Y3tpy)(C?CR)]+ (Y=tBu or Cl) at 524–642 nm measured in dichloromethane at 298 K are assigned to the 3[π(C?CAr)→π*(Y3tpy)] excited states and mixed 3[dπ(Pt)→π*(Y3tpy)]/3[π(C?C)→π*(Y3tpy)] excited states for R=aryl and alkyl groups, respectively. [Pt(tBu3tpy){C?C(C6H4C?C)n?1C6H4‐N(CH3)2‐4}]+ (n=1 and 2) are nonemissive, and this is attributed to the small energy gap between the singlet ground state (S0) and the lowest triplet excited state (T1).  相似文献   

2.
The synergy of push–pull substitution and enlarged ligand bite angles has been used in functionalized heteroleptic bis(tridentate) polypyridine complexes of ruthenium(II) to shift the 1MLCT absorption and the 3MLCT emission to lower energy, enhance the emission quantum yield, and to prolong the 3MLCT excited‐state lifetime. In these complexes, that is, [Ru(ddpd)(EtOOC‐tpy)][PF6]2, [Ru(ddpd‐NH2)(EtOOC‐tpy)][PF6]2, [Ru(ddpd){(MeOOC)3‐tpy}][PF6]2, and [Ru(ddpd‐NH2){(EtOOC)3‐tpy}][PF6]2 the combination of the electron‐accepting 2,2′;6′,2′′‐terpyridine (tpy) ligand equipped with one or three COOR substituents with the electron‐donating N,N′‐dimethyl‐N,N′‐dipyridin‐2‐ylpyridine‐2,6‐diamine (ddpd) ligand decorated with none or one NH2 group enforces spatially separated and orthogonal frontier orbitals with a small HOMO–LUMO gap resulting in low‐energy 1MLCT and 3MLCT states. The extended bite angle of the ddpd ligand increases the ligand field splitting and pushes the deactivating 3MC state to higher energy. The properties of the new isomerically pure mixed ligand complexes have been studied by using electrochemistry, UV/Vis absorption spectroscopy, static and time‐resolved luminescence spectroscopy, and transient absorption spectroscopy. The experimental data were rationalized by using density functional calculations on differently charged species (charge n=0–4) and on triplet excited states (3MLCT and 3MC) as well as by time‐dependent density functional calculations (excited singlet states).  相似文献   

3.
The environmental effects on the structural and photophysical properties of [Ru(L)2(dppz)]2+ complexes (L=bpy=2,2′‐bipyridine, phen=1,10‐phenanthroline, tap=1,4,5,8‐tetraazaphenanthrene; dppz=dipyrido[3,3‐a:2′,3′‐c]phenazine), used as DNA intercalators, have been studied by means of DFT, time‐dependent DFT, and quantum mechanics/molecular mechanics calculations. The electronic characteristics of the low‐lying triplet excited states in water, acetonitrile, and DNA have been investigated to decipher the influence of the environment on the luminescent behavior of this class of molecules. The lowest triplet intra‐ligand (IL) excited state calculated at λ≈800 nm for the three complexes and localized on the dppz ligand is not very sensitive to the environment and is available for electron transfer from a guanine nucleobase. Whereas the lowest triplet metal‐to‐ligand charge‐transfer (3MLCT) states remain localized on the ancillary ligand (tap) in [Ru(tap)2(dppz)]2+, regardless of the environment, their character is drastically modified in the other complexes [Ru(phen)2(dppz)]2+ and [Ru(bpy)2(dppz)]2+ upon going from acetonitrile (MLCTdppz/phen or MLCTdppz/bpy) to water (MLCTdppz) and DNA (MLCTphen and MLCTbpy). The change in the character of the low‐lying 3MLCT states accompanying nuclear relaxation in the excited state controls the emissive properties of the complexes in water, acetonitrile, and DNA. The light‐switching effect has been rationalized on the basis of environment‐induced control of the electronic density distributed in the lowest triplet excited states.  相似文献   

4.
A dinuclear CoII complex, [Co2(tphz)(tpy)2]n+ (n=4, 3 or 2; tphz: tetrapyridophenazine; tpy: terpyridine), has been assembled using the redox‐active and strongly complexing tphz bridging ligand. The magnetic properties of this complex can be tuned from spin‐crossover with T1/2≈470 K for the pristine compound (n=4) to single‐molecule magnet with an ST=5/2 spin ground state when once reduced (n=3) to finally a diamagnetic species when twice reduced (n=2). The two successive and reversible reductions are concomitant with an increase of the spin delocalization within the complex, promoting remarkably large magnetic exchange couplings and high‐spin species even at room temperature.  相似文献   

5.
A dinuclear CoII complex, [Co2(tphz)(tpy)2]n+ (n=4, 3 or 2; tphz: tetrapyridophenazine; tpy: terpyridine), has been assembled using the redox‐active and strongly complexing tphz bridging ligand. The magnetic properties of this complex can be tuned from spin‐crossover with T1/2≈470 K for the pristine compound (n=4) to single‐molecule magnet with an ST=5/2 spin ground state when once reduced (n=3) to finally a diamagnetic species when twice reduced (n=2). The two successive and reversible reductions are concomitant with an increase of the spin delocalization within the complex, promoting remarkably large magnetic exchange couplings and high‐spin species even at room temperature.  相似文献   

6.
RuII complexes incorporating both amide‐linked bithiophene donor ancillary ligands and laminate acceptor ligands; dipyrido[3,2‐a:2′,3′‐c]phenazine (dppz), tetrapyrido[3,2‐a:2′,3′‐c:3′′,2′′‐h:2′′′,3′′′‐j]phenazine (tpphz), and 9,11,20,22‐tetraazatetrapyrido[3,2‐a:2′,3′‐c:3′′,2′′‐l:2′′′,3′′′]‐pentacene (tatpp) exhibit long‐lived charge separated (CS) states, which have been analyzed using time‐resolved transient absorption (TA), fluorescence, and electronic absorption spectroscopy in addition to ground state electrochemical and spectroelectrochemical measurements. These complexes possess two electronically relevant 3MLCT states related to electron occupation of MOs localized predominantly on the proximal “bpy‐like” portion and central (or distal) “phenazine‐like” portion of the acceptor ligand as well as energetically similar 3LC and 3ILCT states. The unusually long excited state lifetimes (τ up to 7 μs) observed in these complexes reflect an equilibration of the 3MLCTprox or 3MLCTdist states with additional triplet states, including a 3LC state and a 3ILCT state that formally localizes a hole on the bithiophene moiety and an electron on the laminate acceptor ligand. Coordination of a ZnII ion to the open coordination site of the laminate acceptor ligand is observed to significantly lower the energy of the 3MLCTdist state by decreasing the magnitude of the excited state dipole and resulting in much shorter excited state lifetimes. The presence of the bithiophene donor group is reported to substantially extend the lifetime of these Zn adducts via formation of a 3ILCT state that can equilibrate with the 3MLCTdist state. In tpphz complexes, ZnII coordination can reorder the energy of the 3MLCTprox and 3MLCTdist states such that there is a distinct switch from one state to the other. The net result is a series of complexes that are capable of forming CS states with electron–hole spatial separation of up to 14 Å and possess exceptionally long lifetimes by equilibration with other triplet states.  相似文献   

7.
Acylhydrazones is a novel yet underexploited class of molecular switches. In the present paper, we investigated the excited‐state decay of three model systems of acylhydrazones in the gas phase by a combination of electronic structure calculations and Tully's surface hopping dynamic simulations. Our computational results demonstrated that the S2(nNπ*) state decay of the three model systems leads to both the imine‐like photo‐isomerization through the S1(nNπ*)/S0 intersection and population of the S1(nOπ*) state that will cross to the triplet manifold. The position of phenyl substituent was found to have an effect on the ratio of the two S1 states. The present theoretical work provides some understandings of the intramolecular mechanism for de‐population of the excited electronic states of acylhydrazones.  相似文献   

8.
Two series of linear ruthenium coordination oligomers, [(Ntpy)Run(tppz)n?1(tpy)]2n+ (mono‐Ntpy series, n=1–3) and [(Ntpy)2Run(tppz)n?1]2n+ (bis‐Ntpy series, n=1–3) have been prepared, where Ntpy is the capping ligand 4′‐di‐p‐anisylamino‐2,2′:6′,2′′‐terpyridine, tppz is tetra‐2‐pyridylpyrazine, and tpy is 2,2′:6′,2′′‐terpyridine. The electrochemical measurements evidence oxidation events from both the amine segments and the metal centers and reduction waves from tppz and the capping ligands. Both series complexes display much enhanced light absorption with respect to model complexes without terminal amine units. Density functional theory (DFT) calculations have been performed on both series and time‐dependent DFT (TD‐DFT) calculations have been performed on the bis‐Ntpy‐series compounds (n=1–4) to characterize their electronic structures and excited states and predict the electronic properties of long‐chain polymers. Upon one‐electron oxidation, the mono‐Ntpy‐series monoruthenium and diruthenium complexes display N+‐localized transitions and metal‐to‐nitrogen charge‐transfer (MNCT) transitions in the near‐infrared (NIR) region. DFT and TD‐DFT computations on the one‐electron‐oxidized forms of the mono‐Ntpy‐series compounds (n=1–4) provide insight into the nature of the MNCT transitions and the degree of charge delocalization.  相似文献   

9.
Reactions of [Rh(κ2O,O‐acac)(PMe3)2] (acac=acetylacetonato) and α,ω‐bis(arylbutadiynyl)alkanes afford two isomeric types of MC4 metallacycles with very different photophysical properties. As a result of a [2+2] reductive coupling at Rh, 2,5‐bis(arylethynyl)rhodacyclopentadienes ( A ) are formed, which display intense fluorescence (Φ=0.07–0.54, τ=0.2–2.5 ns) despite the presence of the heavy metal atom. Rhodium biphenyl complexes ( B ), which show exceptionally long‐lived (hundreds of μs) phosphorescence (Φ=0.01–0.33) at room temperature in solution, have been isolated as a second isomer originating from an unusual [4+2] cycloaddition reaction and a subsequent β‐H‐shift. We attribute the different photophysical properties of isomers A and B to a higher excited state density and a less stabilized T1 state in the biphenyl complexes B , allowing for more efficient intersystem crossing S1→Tn and T1→S0. Control of the isomer distribution is achieved by modification of the bis‐ (diyne) linker length, providing a fundamentally new route to access photoactive metal biphenyl compounds.  相似文献   

10.
The activation of C?H bonds in alkanes is currently a hot research topic in chemistry. The atomic oxygen radical anion (O?.) is an important species in C?H activation. The mechanistic details of C?H activation by O?. radicals can be well understood by studying the reactions between O?. containing transition metal oxide clusters and alkanes. Here the reactivity of scandium oxide cluster anions toward n‐butane was studied by using a high‐resolution time‐of‐flight mass spectrometer coupled with a fast flow reactor. Hydrogen atom abstraction (HAA) from n‐butane by (Sc2O3)NO? (N=1–18) clusters was observed. The reactivity of (Sc2O3)NO? (N=1–18) clusters is significantly sizedependent and the highest reactivity was observed for N=4 (Sc8O13?) and 12 (Sc24O37?). Larger (Sc2O3)NO? clusters generally have higher reactivity than the smaller ones. Density functional theory calculations were performed to interpret the reactivity of (Sc2O3)NO? (N=1–5) clusters, which were found to contain the O?. radicals as the active sites. The local charge environment around the O?. radicals was demonstrated to control the experimentally observed size‐dependent reactivity. This work is among the first to report HAA reactivity of cluster anions with dimensions up to nanosize toward alkane molecules. The anionic O?. containing scandium oxide clusters are found to be more reactive than the corresponding cationic ones in the C?H bond activation.  相似文献   

11.
A first systematic study upon the preparation and exploration of a series of iron 10‐thiacorroles with simple halogenido (F, Cl, Br, I), pseudo‐halogenido (N3, I3) and solvent‐derived axial ligands (DMSO, pyridine) is reported. The compounds were prepared from the free‐base octaethyl‐10‐thiacorrole by iron insertion and subsequent ligand‐exchange reactions. The small N4 cavity of the ring‐contracted porphyrinoid results in an intermediate spin (i.s., S=3/2) state as the ground state for the iron(III) ion. In most of the investigated cases, the i.s. state is found unperturbed and independent of temperature, as determined by a combination of X‐ray crystallography and magnetometry with 1H NMR‐, EPR‐, and Mössbauer spectroscopy. Two exceptions were found. The fluorido iron(III) complex is inhomogenous in the solid and contains a thermal i.s. (S=3/2)→high spin (h.s., S=5/2) crossover fraction. On the other side, the cationic bis(pyridine) complex resides in the expected low spin (l.s., S=1/2) state. Chemically, the iron 10‐thiacorroles differ from the iron porphyrins mainly by weaker axial ligand binding and by a cathodic shift of the redox potentials. These features make the 10‐thiacorroles interesting ligands for future research on biomimetic catalysts and model systems for unusual heme protein active sites.  相似文献   

12.
We prepared two geometric isomers of [Ir(tpy)(ppy)H]+, previously proposed as a key intermediate in the photochemical reduction of CO2 to CO, and characterized their notably different ground‐ and excited‐state interactions with CO2 and their hydricities using experimental and computational methods. Only one isomer, C‐trans‐[Ir(tpy)(ppy)H]+, reacts with CO2 to generate the formato complex in the ground state, consistent with its calculated hydricity. Under photocatalytic conditions in CH3CN/TEOA, a common reactive C‐trans‐[Ir(tpy)(ppy)]0 species, irrespective of the starting isomer or monodentate ligand (such as hydride or Cl), reacts with CO2 and produces CO with the same catalytic efficiency.  相似文献   

13.
We prepared two geometric isomers of [Ir(tpy)(ppy)H]+, previously proposed as a key intermediate in the photochemical reduction of CO2 to CO, and characterized their notably different ground‐ and excited‐state interactions with CO2 and their hydricities using experimental and computational methods. Only one isomer, C‐trans‐[Ir(tpy)(ppy)H]+, reacts with CO2 to generate the formato complex in the ground state, consistent with its calculated hydricity. Under photocatalytic conditions in CH3CN/TEOA, a common reactive C‐trans‐[Ir(tpy)(ppy)]0 species, irrespective of the starting isomer or monodentate ligand (such as hydride or Cl), reacts with CO2 and produces CO with the same catalytic efficiency.  相似文献   

14.
Films of linear and branched oligomer wires of Fe(tpy)2 (tpy=2,2′:6′,2′′‐terpyridine) were constructed on a gold‐electrode surface by the interfacial stepwise coordination method, in which a surface‐anchoring ligand, (tpy? C6H4N?NC6H4? S)2 ( 1 ), two bridging ligands, 1,4‐(tpy)2C6H4 ( 3 ) and 1,3,5‐(C?C? tpy)3C6H3 ( 4 ), and metal ions were used. The quantitative complexation of the ligands and FeII ions was monitored by electrochemical measurements in up to eight complexation cycles for linear oligomers of 3 and in up to four cycles for branched oligomers of 4 . STM observation of branched oligomers at low surface coverage showed an even distribution of nanodots of uniform size and shape, which suggests the quantitative formation of dendritic structures. The electron‐transport mechanism and kinetics for the redox reaction of the films of linear and branched oligomer wires were analyzed by potential‐step chronoamperometry (PSCA). The unique current‐versus‐time behavior observed under all conditions indicates that electron conduction occurs not by diffusional motion but by successive electron hopping between neighboring redox sites within a molecular wire. Redox conduction in a single molecular wire in a redox‐polymer film has not been reported previously. The analysis provided the rate constant for electron transfer between the electrode and the nearest redox‐complex moiety, k1 (s?1), as well as that for intrawire electron transfer between neighboring redox‐complex moieties, k2 (cm2 mol?1 s?1). The strong effect of the electrolyte concentration on both k1 and k2 indicates that the counterion motion limits the electron‐hopping rate at lower electrolyte concentrations. Analysis of the dependence of k1 and k2 on the potential gave intrinsic kinetic parameters without overpotential effects: k10=110 s?1, k20=2.6×1012 cm2 mol?1 s?1 for [n Fe 3 ], and k10=100 s?1, k20=4.1×1011 cm2 mol?1 s?1 for [n Fe 4 ] (n=number of complexation cycles).  相似文献   

15.
Crystallization experiments with the dinuclear chelate ring complex di‐μ‐chlorido‐bis[(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)platinum(II)], [Pt2(C15H19O4)2Cl2], containing a derivative of the natural compound eugenol as ligand, have been performed. Using five different sets of crystallization conditions resulted in four different complexes which can be further used as starting compounds for the synthesis of Pt complexes with promising anticancer activities. In the case of vapour diffusion with the binary chloroform–diethyl ether or methylene chloride–diethyl ether systems, no change of the molecular structure was observed. Using evaporation from acetonitrile (at room temperature), dimethylformamide (DMF, at 313 K) or dimethyl sulfoxide (DMSO, at 313 K), however, resulted in the displacement of a chloride ligand by the solvent, giving, respectively, the mononuclear complexes (acetonitrile‐κN)(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chloridoplatinum(II) monohydrate, [Pt(C15H19O4)Cl(CH3CN)]·H2O, (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethylformamide‐κO)platinum(II), [Pt(C15H19O4)Cl(C2H7NO)], and (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethyl sulfoxide‐κS)platinum(II), determined as the analogue {η2‐2‐allyl‐4‐methoxy‐5‐[(ethoxycarbonyl)methoxy]phenyl‐κC1}chlorido(dimethyl sulfoxide‐κS)platinum(II), [Pt(C14H17O4)Cl(C2H6OS)]. The crystal structures confirm that acetonitrile interacts with the PtII atom via its N atom, while for DMSO, the S atom is the coordinating atom. For the replacement, the longest of the two Pt—Cl bonds is cleaved, leading to a cis position of the solvent ligand with respect to the allyl group. The crystal packing of the complexes is characterized by dimer formation via C—H…O and C—H…π interactions, but no π–π interactions are observed despite the presence of the aromatic ring.  相似文献   

16.
The ligands 11‐cyanodipyrido[3,2‐a:2′,3′‐c]phenazine and 2‐(11‐dipyrido[3,2‐a:2′,3′‐c]phenazine)‐5‐phenyl‐1,3,4‐oxadiazole have been coordinated to ReI, CuI, RuII and IrIII metal centres. Single‐crystal X‐ray analyses were performed on fac‐chlorotricarbonyl(11‐cyanodipyrido[3,2‐a:2′,3′‐c]phenazine)rhenium (C22H9ClN5O3Re, a=6.509(5), b=12.403(5), c=13.907(5) Å, α=96.88(5), β=92.41(5), γ=92.13(5)°, triclinic, P , Z=2) and bis‐2,2′‐bipyridyl(2‐(11‐dipyrido[3,2‐a:2′,3′‐c]phenazine)‐5‐phenyl‐1,3,4‐oxadiazole)ruthenium triflate ? 2 CH3CN (C52H36F6N12O8RuS2, a=10.601(5), b=12.420(5), c=20.066(5) Å, α=92.846(5), β=96.493(5), γ=103.720(5)°, triclinic, P , Z=2). The ground‐ and excited‐state properties of the ligands and complexes have been investigated with a range of techniques, including electrochemistry, absorption and emission spectroscopy, spectroelectrochemistry and excited‐state lifetime studies. Spectroscopic, time‐resolved and DFT studies reveal that the ligand‐centred (LC) transitions and their resultant excited states play an important role in the photophysical properties of the complexes. Evidence for the presence of lower‐lying metal‐to‐ligand charge‐transfer transitions is obtained from resonance Raman spectroscopy, but nanosecond transient Raman experiments suggest that once excited, the 3LC state is populated.  相似文献   

17.
By employing the conjugated bithiophene ligand 5,5′‐bis(1H‐imidazol‐1‐yl)‐2,2′‐bithiophene (bibp), which can exhibit trans and cis conformations, two different CuII coordination polymers, namely, poly[[μ‐5,5′‐bis(1H‐imidazol‐1‐yl)‐2,2′‐bithiophene‐κ2N:N′](μ2‐4,4′‐oxydibenzoato‐κ2O:O′)copper(II)], [Cu(C14H8O5)(C14H10N4S2)]n or [Cu(bibp)(oba)]n, (I), and catena‐poly[μ‐aqua‐bis[μ‐5,5′‐bis(1H‐imidazol‐1‐yl)‐2,2′‐bithiophene‐κ2N:N′]bis(μ3‐4,4′‐oxydibenzoato)‐κ3O:O′:O′′;κ4O:O′,O′′:O′‐dicopper(II)], [Cu2(C14H8O5)2(C14H10N4S2)(H2O)]n or [Cu2(bibp)(oba)2(H2O)]n, (II), have been prepared through one‐pot concomitant crystallization and characterized by single‐crystal X‐ray diffraction, IR spectroscopy, elemental analysis, powder X‐ray diffraction (PXRD) and thermogravimetric (TG) analysis. Single‐crystal X‐ray diffraction indicates that the most interesting aspect of the structure is the existence of sole trans and cis conformations of the bibp ligand in a single net of (I) and (II), respectively. Compound (I) displays a threefold interpenetrating three‐dimensional framework with a 4‐connected {65.8} cds topology, whereas (II) features a one‐dimensional chain structure. In the crystal of (II), the polymeric chains are further extended through C—H…O hydrogen bonds and C—H…π interactions into a three‐dimensional supramolecular architecture. In addition, strong intramolecular O—H…O hydrogen bonds formed between the bridging water molecules and the carboxylate O atoms improve the stability of the framework of (II). Furthermore, solid‐state UV–Vis spectroscopy experiments show that compounds (I) and (II) exhibit optical band gaps which are characteristic for optical semiconductors, with values of 2.70 and 2.26 eV, respectively.  相似文献   

18.
The potentially hexadentate mixed‐donor cage ligand 1‐methyl‐8‐amino‐3,13,16‐trithia‐6,10,19‐triazabicyclo[6.6.6]eicosane (AMME‐N3S3sar; sar=sarcophagine) displays variable coordination modes in a complex with copper(II). In the absence of coordinating anions, the ligand adopts a conventional hexadentate N3S3 binding mode in the complex [Cu(AMME‐N3S3sar)](ClO4)2 that is typical of cage ligands. This structure was determined by X‐ray crystallography and solution spectroscopy (EPR and NIR UV/Vis). However, in the presence of bromide ions in DMSO, clean conversion to a five‐coordinate bromido complex [Cu(AMME‐N3S3sar)Br]+ is observed that features a novel tetradentate (N2S2)‐coordinated form of the cage ligand. This copper(II) complex has also been characterized by X‐ray crystallography and solution spectroscopy. The mechanism of the reversible interconversion between the six‐ and five‐coordinated copper(II) complexes has been studied and the reaction has been resolved into two steps; the rate of the first is linearly dependent on bromide ion concentration and the second is bromide independent. Electrochemistry of both [Cu(AMME‐N3S3sar)]2+ and [Cu(AMME‐N3S3sar)Br]+ in DMSO shows that upon reduction to the monovalent state, they share a common five‐coordinated form in which the ligand is bound to copper in a tetradentate form exclusively, regardless of whether a six‐ or five‐coordinated copper(II) complex is the precursor.  相似文献   

19.
Two new coordination polymers (CPs) formed from 5‐iodobenzene‐1,3‐dicarboxylic acid (H2iip) in the presence of the flexible 1,4‐bis(1H‐imidazol‐1‐yl)butane (bimb) auxiliary ligand, namely poly[[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)butane‐κ2N3:N3′](μ3‐5‐iodobenzene‐1,3‐dicarboxylato‐κ4O1,O1′:O3:O3′)cobalt(II)], [Co(C8H3IO4)(C10H14N4)]n or [Co(iip)(bimb)]n, (1), and poly[[[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)butane‐κ2N3:N3′](μ2‐5‐iodobenzene‐1,3‐dicarboxylato‐κ2O1:O3)zinc(II)] trihydrate], {[Zn(C8H3IO4)(C10H14N4)]·3H2O}n or {[Zn(iip)(bimb)]·3H2O}n, (2), were synthesized and characterized by FT–IR spectroscopy, thermogravimetric analysis (TGA), solid‐state UV–Vis spectroscopy, single‐crystal X‐ray diffraction analysis and powder X‐ray diffraction analysis (PXRD). The iip2− ligand in (1) adopts the (κ11‐μ2)(κ1, κ1‐μ1)‐μ3 coordination mode, linking adjacent secondary building units into a ladder‐like chain. These chains are further connected by the flexible bimb ligand in a transtranstrans conformation. As a result, a twofold three‐dimensional interpenetrating α‐Po network is formed. Complex (2) exhibits a two‐dimensional (4,4) topological network architecture in which the iip2− ligand shows the (κ1)(κ1)‐μ2 coordination mode. The solid‐state UV–Vis spectra of (1) and (2) were investigated, together with the fluorescence properties of (2) in the solid state.  相似文献   

20.
In this study we show that nanoparticles of various ferric oxides (hematite, maghemite, amorphous Fe2O3, β‐Fe2O3 and ferrihydrite) incorporated into carbon paste exhibit electro‐catalytic properties towards hydrogen peroxide reduction. The modified paste electrode performances were evaluated and compared with those obtained with Prussian Blue‐modified carbon paste electrode, which represents an excellent chemical mediator towards the H2O2 redox reaction (as widely described in literature). The best catalytic activity was found for carbon paste modified by amorphous ferric oxide with 2–4 nm particle size, which was further tested for possible application as hydrogen peroxide sensor. At pH 7, the limit of detection was 2×10?5 M H2O2 (S/N=3), the calibration curves were linear upto 8.5 mM H2O2 (R2=0.998), the measurement reproducibility (RSD=97%, n=4), the interelectrode reproducibility (RSD=16%, nelectrodes=5) and <3 s response time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号