首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《化学:亚洲杂志》2018,13(16):2054-2059
The rational design and development of efficient and affordable enzyme‐free electrocatalysts for electrochemical detection are of great significance for the large‐scale applications of sensor materials, and have aroused increasing research interest. Herein, we report that a typical polyoxometalate (POM)‐based metal–organic framework (NENU5) that was hybridized with ketjenblack (KB) was a highly efficient electrochemical catalyst that could be used for the highly sensitive nonenzymatic detection of H2O2. The composite catalyst exhibited superb electrochemical detection performance towards H2O2, including a broad linear range from 10–50 mm , a low detection limit of 1.03 μm , and a high sensitivity of 33.77 μA mm −1, as well as excellent selectivity and stability. These excellent electrocatalytic properties should be attributed to the unique redox activity of the POM, the high specific surface area of the metal–organic framework (MOF), the strong conductivity of KB, and the synergistic effects of the multiple components in the composites during the electrolysis of H2O2. This work provides a new pathway for the exploration of nonenzymatic electrochemical sensors.  相似文献   

2.
Although metal oxide nanocrystals are often highly active, rapid aggregation (particularly in water) generally precludes detailed solution‐state investigations of their catalytic reactions. This is equally true for visible‐light‐driven water oxidation with hematite α‐Fe2O3 nanocrystals, which bridge a conceptual divide between molecular complexes of iron and solid‐state hematite photoanodes. We herein report that the aqueous solubility and remarkable stability of polyoxometalate (POM)‐complexed hematite cores with 275 iron atoms enable investigations of visible‐light‐driven water oxidation at this frontier using the versatile toolbox of solution‐state methods typically reserved for molecular catalysis. The use of these methods revealed a unique mechanism, understood as a general consequence of fundamental differences between reactions of solid‐state metal oxides and freely diffusing “fragments” of the same material.  相似文献   

3.
A composite of the metal–organic framework (MOF) NH2‐MIL‐125(Ti) and molecular and ionic nickel(II) species, catalyzed hydrogen evolution from water under UV light. In 95 v/v % aqueous conditions the composite produced hydrogen in quantities two orders of magnitude higher than that of the virgin framework and an order of magnitude greater than that of the molecular catalyst. In a 2 v/v % water and acetonitrile mixture, the composite demonstrated a TOF of 28 mol H2 g(Ni)?1 h?1 and remained active for up to 50 h, sustaining catalysis for three times longer and yielding 20‐fold the amount of hydrogen. Appraisal of physical mixtures of the MOF and each of the nickel species under identical photocatalytic conditions suggest that similar surface localized light sensitization and proton reduction processes operate in the composite catalyst. Both nickel species contribute to catalytic conversion, although different activation behaviors are observed.  相似文献   

4.
Precise control of the structure and spatial distance of Lewis acid (LA) and Lewis base (LB) sites in a porous system to construct efficient solid frustrated Lewis pair (FLP) catalyst is vital for industrial application but remains challenging. Herein, we constructed FLP sites in a polyoxometalate (POM)-based metal–organic framework (MOF) by introducing coordination-defect metal nodes (LA) and surface-basic POM with abundant oxygen (LB). The well-defined and unique spatial conformation of the defective POM-based MOF ensure that the distance between LA and LB is at ~4.3 Å, a suitable distance to activate H2. This FLP catalyst can heterolytically dissociate H2 into active Hδ−, thus exhibiting high activity in hydrogenation, which is 55 and 2.7 times as high as that of defect-free POM-based MOF and defective MOF without POM, respectively. This work provides a new avenue toward precise design multi-site catalyst to achieve specific activation of target substrate for synergistic catalysis.  相似文献   

5.
Photocatalytic water splitting requires separation of the mixed H2 and O2 products and is often hampered by the sluggish O2‐producing half reaction. An approach is now reported to address these issues by coupling the H2‐producing half reaction with value‐added benzylamine oxidation reaction using metal–organic framework (MOF) composites. Upon MOF photoexcitation, the electrons rapidly reduce the protons to generate H2 and the holes promote considerable benzylamine oxidation to N‐benzylbenzaldimine with high selectivity. Further experimental characterizations and theoretical calculation reveal that the highly conjugated s‐triazine strut in the MOF structure is crucial to the efficient charge separation and excellent photocatalytic activity.  相似文献   

6.
Herein we report a new ammoniation‐based chemical modification strategy for synthesis of continuous and uniform metal–organic framework (MOF)/polyvinylidene fluoride (PVDF) membranes with attractive performance. Ammoniation can promote the support PVDF membrane to produce amino groups, form a nanoparticle structure, and be well cross‐linked; therefore, the high‐density heterogeneous nucleation sites for MOFs growth were provided and the thermal stability and chemical resistance of composite membranes can be greatly improved. The high‐quality layers of representative Cu‐BTC and ZIF‐8 were synthesized on the chemically modified PVDF membranes. By ammoniation, ZIF‐7 can even be grown under harsh synthetic conditions such as in DMF precursor solutions at 403 K. The fabricated MOF/PVDF composite membranes with excellent hollow fiber structures and enhanced structural stability exhibited high H2 permselectivities for H2/CO2 and H2/N2.  相似文献   

7.
A novel Ni‐based metal–organic framework (Ni‐MOF) with a Schiff base ligand as an organic linker, Ni3(bdda)2(OAc)2?6H2O (H2bdda = 4,4′‐[benzene‐1,4‐diylbis(methylylidenenitrilo)]dibenzoic acid), was synthesized and characterized using powder X‐ray powder diffraction, thermogravimetric analysis, Brunauer–Emmett–Teller measurements, inductively coupled plasma atomic emission spectroscopy, transmission electron microscopy, elemental analysis and Fourier transform infrared spectroscopy. The synthesized Ni‐MOF exhibited a high catalytic activity in benzyl alcohol oxidation using tert‐butyl hydroperoxide under solvent‐free conditions. Also, the efficiency of the catalyst was investigated in the cascade reaction of oxidation–Knoevanagel condensation under mild conditions. The Ni‐MOF catalyst could be recovered and reused four times without significant reduction in its catalytic activity.  相似文献   

8.
The efficient fixation of excess CO2 from the atmosphere to yield value‐added chemicals remains crucial in response to the increasing levels of carbon emission. Coupling enzymatic reactions with electrochemical regeneration of cofactors is a promising technique for fixing CO2, while producing biomass which can be further transformed into biofuels. Herein, a bioelectrocatalytic system was established by depositing crystallites of a mesoporous metal–organic framework (MOF), termed NU‐1006, containing formate dehydrogenase, on a fluorine‐doped tin oxide glass electrode modified with Cp*Rh(2,2′‐bipyridyl‐5,5′‐dicarboxylic acid)Cl2 complex. This system converts CO2 into formic acid at a rate of 79±3.4 mm h?1 with electrochemical regeneration of the nicotinamide adenine dinucleotide cofactor. The MOF–enzyme composite exhibited significantly higher catalyst stability when subjected to non‐native conditions compared to the free enzyme, doubling the formic acid yield.  相似文献   

9.
The Ti‐binding energy and hydrogen adsorption energy of a Ti‐decorated Mg‐based metal–organic framework‐74 (Mg‐MOF‐74) were evaluated by using first‐principles calculations. Our results revealed that only three Ti adsorption sites were found to be stable. The adsorption site near the metal oxide unit is the most stable. To investigate the hydrogen‐adsorption properties of Ti‐functionalized Mg‐MOF‐74, the hydrogen‐binding energy was determined. For the most stable Ti adsorption site, we found that the hydrogen adsorption energy ranged from 0.26 to 0.48 eV H2?1. This is within the desirable range for practical hydrogen‐storage applications. Moreover, the hydrogen capacity was determined by using ab initio molecular dynamics simulations. Our results revealed that the hydrogen uptake by Ti‐decorated Mg‐MOF‐74 at temperatures of 77, 150, and 298 K and ambient pressure were 1.81, 1.74, and 1.29 H2 wt %, respectively.  相似文献   

10.
A Zr‐based metal–organic framework with bipyridine units (UiO‐67) has been utilized for the immobilization of catalytically active iron species via a post‐synthetic metalation method. UiO‐67 bipyridine MOF was synthesized through a simple solvothermal method and was shown to have a UiO‐type structure. Post‐synthetic metalation of UiO‐67 MOF was performed for the immobilization of the catalytically active FeCl3. FT‐IR and EDX element map suggested that FeCl3 is coordinately bonded to the UiO‐67 bipyridine framework. The synthesized UiO‐67‐FeCl3 catalyst was used for the aerobic oxidation of alcohols and benzylic compounds in the presence of molecular oxygen. In addition, the UiO‐67‐FeCl3 catalyst can be reused as a solid heterogeneous catalyst without compromising its activity and selectivity.  相似文献   

11.
Polymeric resins are practically important adsorbents in a wide variety of applications, but they generally suffer from low surface areas and limited functionalized adsorption sites owing to their closely compacted and tangled polymeric chains. A metal–organic framework (MOF)–polymer composite with enhanced adsorption capacity against the compacted polymeric resins was reported. The strategy to incorporate functionalized oligomer within the cavities of the MOF was demonstrated by the preparation of MIL‐101(Cr) incorporated with N‐methyl‐d ‐glucamine‐based organosiloxane polymer. The resulting MOF composite shows high efficiency for the removal of boric acid from water because of exceptionally high loading of functional groups responsible for the boron adsorption. This material offers promising perspectives for boron removal applications in seawater desalination.  相似文献   

12.
Insight into how H2O is oxidized to O2 is envisioned to facilitate the rational design of artificial water oxidation catalysts, which is a vital component in solar‐to‐fuel conversion schemes. Herein, we report on the mechanistic features associated with a dinuclear Ru‐based water oxidation catalyst. The catalytic action of the designed Ru complex was studied by the combined use of high‐resolution mass spectrometry, electrochemistry, and quantum chemical calculations. Based on the obtained results, it is suggested that the designed ligand scaffold in Ru complex 1 has a non‐innocent behavior, in which metal–ligand cooperation is an important part during the four‐electron oxidation of H2O. This feature is vital for the observed catalytic efficiency and highlights that the preparation of catalysts housing non‐innocent molecular frameworks could be a general strategy for accessing efficient catalysts for activation of H2O.  相似文献   

13.
We transformed the hydrophilic metal–organic framework (MOF) UiO‐67 into hydrophobic UiO‐67‐R s (R=alkyl) by introducing alkyl chains into organic linkers, which not only protected hydrophilic Zr6O8 clusters to make the MOF interspace superoleophilic, but also led to a rough crystal surface beneficial for superhydrophobicity. The UiO‐67‐R s displayed high acid, base, and water stability, and long alkyl chains offered better hydrophobicity. Good hydrophobicity/oleophilicity were also possible with mixed‐ligand MOFs containing metal‐binding ligands. Thus, a (super)hydrophobic MOF catalyst loaded with Pd centers efficiently catalyzed Sonogashira reactions in water at ambient temperature. Studies of the hydrophobic effects of the coordination interspace and the outer surface suggest a simple de novo strategy for the synthesis of superhydrophobic MOFs that combine surface roughness and low surface energy. Such MOFs have potential for environmentally friendly catalysis and water purification.  相似文献   

14.
Described here is a new and viable approach to achieve Pd catalysis for aerobic oxidation systems (AOSs) by circumventing problems associated with both the oxidation and the catalysis through an all‐in‐one strategy, employing a robust metal–organic framework (MOF). The rational assembly of a PdII catalyst, phenanthroline ligand, and CuII species (electron‐transfer mediator) into a MOF facilitates the fast regeneration of the PdII active species, through an enhanced electron transfer from in situ generated Pd0 to CuII, and then CuI to O2, trapped in the framework, thus leading to a 10 times higher turnover number than that of the homogeneous counterpart for Pd‐catalyzed desulfitative oxidative coupling reactions. Moreover, the MOF catalyst can be reused five times without losing activity. This work provides the first exploration of using a MOF as a promising platform for the development of Pd catalysis for AOSs with high efficiency, low catalyst loading, and reusability.  相似文献   

15.
A water‐stable luminescent terbium‐based metal–organic framework (MOF), {[Tb(L1)1.5(H2O)] ? 3 H2O}n (Tb‐MOF), with rod‐shaped secondary building units (SBUs) and honeycomb‐type tubular channels has been synthesized and structurally characterized by single‐crystal X‐ray diffraction. The high green emission intensity and the microporous nature of the Tb‐MOF indicate that it can potentially be used as a luminescent sensor. In this work, we show that Tb‐MOF can selectively sense Fe3+ and Al3+ ions from mixed metal ions in water through different detection mechanisms. In addition, it also exhibits high sensitivity for 2,4,6‐trinitrophenol (TNP) in the presence of other nitro aromatic compounds in aqueous solution by luminescence quenching experiments.  相似文献   

16.
A surfactant‐stabilized coordination strategy is used to make two‐dimensional (2D) single‐atom catalysts (SACs) with an ultrahigh Pt loading of 12.0 wt %, by assembly of pre‐formed single Pt atom coordinated porphyrin precursors into free‐standing metal–organic framework (MOF) nanosheets with an ultrathin thickness of 2.4±0.9 nm. This is the first example of 2D MOF‐based SACs. Remarkably, the 2D SACs exhibit a record‐high photocatalytic H2 evolution rate of 11 320 μmol g?1 h?1 via water splitting under visible light irradiation (λ>420 nm) compared with those of reported MOF‐based photocatalysts. Moreover, the MOF nanosheets can be readily drop‐casted onto solid substrates, forming thin films while still retaining their photocatalytic activity, which is highly desirable for practical solar H2 production.  相似文献   

17.
The strategy to functionalize water‐stable metal–organic frameworks (MOFs) in order to improve their CO2 uptake capacities for efficient CO2 separation remains limited and challenging. We herein present an effective approach to functionalize a prominent water‐stable MOF, UiO‐66(Zr), by a combination of optimization and metalated‐ligand exchange. In particular, by systematic optimization, we have successfully obtained UiO‐66(Zr) of the highest BET surface area reported so far (1730 m2 g?1). Moreover, it shows a hybrid Type I/IV N2 isotherm at 77 K and a mesopore size of 3.9 nm for the first time. The UiO‐66 MOF underwent a metalated‐ligand‐exchange (MLE) process to yield a series of new UiO‐66‐type MOFs, among which UiO‐66‐(COONa)2‐EX and UiO‐66‐(COOLi)4‐EX MOFs have both enhanced CO2 working capacity and IAST CO2/N2 selectivity. Our approach has thus suggested an alternative design to achieve water‐stable MOFs with high crystallinity and gas uptake for efficient CO2 separation.  相似文献   

18.
Various polyoxometalates (POMs) were successfully immobilized to the mesoporous coordination polymer MIL‐101 resulting in a series of POM–MOF composite materials POM@MIL‐101 (POM=K4PW11VO40, H3PW12O40, K4SiW12O40). These materials were synthesized by a simple one‐pot reaction of Keggin POMs, tetramethylammonium hydroxide (TMAH), terephthalic acid (H2bdc), and Cr3+ ions. XRD, FTIR, thermogravimetric analyses (TG), inductively coupled plasma (ICP) spectrometry, and energy‐dispersive X‐ray spectroscopy (EDX) collectively confirmed the successful combination of POMs and the porous framework. Further, these composites POM@MIL‐101 with different loading of POMs were achieved by variation of the POM dosage. Notably, the uptake capacity of MIL‐101 towards organic pollutants in aqueous solution was significantly improved by immobilization of hydrophilic POMs into cages of MIL‐101. An uptake capacity of 371 mg g?1, comparable to that of the graphene oxide sponges, and much higher than that of the commercial activated carbon, was achieved at room temperature in 5 min when dipping 20 mg PW11V@MIL‐101 in the methylene blue (MB) solution (100 mL of 100 mg L?1 MB solution). Further study revealed that the POM@MIL‐101 composite materials not only exhibited a fast adsorption rate towards dye molecules, but also possessed of selective adsorption ability of the cationic dyes in wastewater. For example, the adsorption efficiency of PW11V@MIL‐101 (10 mg) towards MB (100 mL of 10 mg L?1) could reach 98 % in the initial 5 min, and it could capture MB dye molecules from the binary mixture of the MB and MO with similar size. Also, the POM@MIL‐101 materials could be readily recycled and reused, and no POM leached in the dye adsorption process.  相似文献   

19.
Improving the stability of lead halide perovskite quantum dots (QDs) in a system containing water is the key for their practical application in artificial photosynthesis. Herein, we encapsulate low‐cost CH3NH3PbI3 (MAPbI3) perovskite QDs in the pores of earth‐abundant Fe‐porphyrin based metal organic framework (MOF) PCN‐221(Fex) by a sequential deposition route, to construct a series of composite photocatalysts of MAPbI3@PCN‐221(Fex) (x=0–1). Protected by the MOF the composite photocatalysts exhibit much improved stability in reaction systems containing water. The close contact of QDs to the Fe catalytic site in the MOF, allows the photogenerated electrons in the QDs to transfer rapidly the Fe catalytic sites to enhance the photocatalytic activity for CO2 reduction. Using water as an electron source, MAPbI3@PCN‐221(Fe0.2) exhibits a record‐high total yield of 1559 μmol g?1 for photocatalytic CO2 reduction to CO (34 %) and CH4 (66 %), 38 times higher than that of PCN‐221(Fe0.2) in the absence of perovskite QDs.  相似文献   

20.
H2‐promoted catalytic activity of oxide‐supported metal catalysts in low‐temperature CO oxidation is of great interest but its origin remains unknown. Employing an FeO(111)/Pt(111) inverse model catalyst, we herewith report direct experimental evidence for the spillover of H(a) adatoms on the Pt surface formed by H2 dissociation to the Pt?FeO interface to form hydroxyl groups that facilely oxidize CO(a) on the neighboring Pt surface to produce CO2. Hydroxyl groups and coadsorbed water play a crucial role in the occurrence of hydrogen spillover. These results unambiguously identify the occurrence of hydrogen spillover from the metal surface to the noble metal/metal oxide interface and the resultant enhanced catalytic activity of the metal/oxide interface in low‐temperature CO oxidation, which provides a molecular‐level understanding of both H2‐promoted catalytic activity of metal/oxide ensembles in low‐temperature CO oxidation and hydrogen spillover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号