首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The flow and acoustic fields of subsonic turbulent hot jets exhausting from three divergent nozzles at a Mach number M=0.12 based on the nozzle exit velocity are conducted using a hybrid CFD-CAA method. The flow field is computed by highly resolved large-eddy simulations (LES) and the acoustic field is computed by solving the acoustic perturbation equations (APE) whose acoustic source terms are determined by the LES. The LES of the computational domain includes the interior of the nozzle geometry. Synthetic turbulence is prescribed at the inlet of the nozzle to mimic the exit conditions downstream of the last turbine stage. The LES is based on hierarchically refined Cartesian meshes, where the nozzle wall boundaries are resolved by a conservative cut-cell method. The APE solution is determined on a block structured mesh. Three nozzle geometries of increasing complexity are considered, i.e., the flow and acoustic fields of a clean geometry without any built-in components, a nozzle with a centerbody, and a nozzle with a centerbody plus struts are computed. Spectral distributions of the LES based turbulent fluctuated quantities inside the nozzle and further downstream are analyzed in detail. The noise sources in the near field are noticeably influenced by the nozzle built-in components. The centerbody nozzle increases the overall sound pressure level (OASPL) in the near field with respect to the clean nozzle and the centerbody-plus-strut nozzle reduces it compared to the centerbody nozzle due to the increased turbulent mixing. The centerbody perturbed nozzle configurations generate a remarkable spectral peak at S t=0.56 which also occurs in the APE findings in the near field region. This tone is generated by large scale vortical structures shed from the centerbody. The analysis of the individual noise sources shows that the entropy term possesses the highest acoustic contribution in the sideline direction whereas the vortex sound source dominates the downstream acoustics.  相似文献   

2.
Two-dimensional numerical simulations of the Richtmyer–Meshkov unstable “shock-jet” problem are conducted using both large-eddy simulation (LES) and unsteady Reynolds-averaged Navier–Stokes (URANS) approaches in an arbitrary Lagrangian–Eulerian hydrodynamics code. Turbulence statistics are extracted from LES by running an ensemble of simulations with multimode perturbations to the initial conditions. Detailed grid convergence studies are conducted, and LES results are found to agree well with both experiment and high-order simulations conducted by Shankar et al. (Phys Fluids 23, 024102, 2011). URANS results using a kL approach are found to be highly sensitive to initialization of the turbulence lengthscale L and to the time at which L becomes resolved on the computational mesh. It is observed that a gradient diffusion closure for turbulent species flux is a poor approximation at early times, and a new closure based on the mass-flux velocity is proposed for low-Reynolds-number mixing.  相似文献   

3.
The Siemens SGT-800 3rd generation DLE burner fitted to an atmospheric combustion rig has been numerically investigated. Pure methane and methane enriched by 80 vol% hydrogen flames have been considered. A URANS (Unsteady Reynolds Averaged Navier-Stokes) approach was used in this study along with the k ? ω SST and the k ? ω SST-SAS models for the turbulence transport. The chemistry is coupled to the turbulent flow simulations by the use of a laminar flamelet library combined with a presumed PDF. The effect of the mesh density in the mixing and the flame region and the effect of the turbulence model and reaction rate model constant are first investigated for the methane/air flame case. The results from the k ? ω SST-SAS along with flamelet libraries are shown to be in excellent agreement with experimental data, whereas the k ? ω SST model is too dissipative and cannot capture the unsteady motion of the flame. The k ? ω SST-SAS model is used for simulation of the 80 vol% hydrogen enriched flame case without further adjusting the model constants. The global features of the hydrogen enrichment are very well captured in the simulations using the SST-SAS model. With the hydrogen enrichment the time averaged flame front location moves upstream towards the burner exit nozzle. The results are consistent with the experimental observations. The model captures the three dominant low frequency unsteady motion observed in the experiments, indicating that the URANS/LES hybrid model indeed is capable of capturing complex, time dependent, features such as an interaction between a PVC and the flame front.  相似文献   

4.
An experimental study was conducted to investigate the effects of multilateral jet mixing, using both three and four side-jets, on the structure and stability of turbulent partially-premixed flames. Particle Image Velocimetry and OH*-chemiluminescence were used to study the effects of geometry and operating conditions on the resulting flow-field and reaction zone structures, respectively. These effects were compared under varying ratios of side-jet to primary flow momentum, whilst keeping the bulk flow constant. It was found that the mixing regimes upstream of the nozzle exit affect the flame characteristics, i.e. an impinging regime is likely to generate a lifted flame whilst a backflow regime is likely to generate an attached flame. Unlike the 4 side-jets cases, the OH* images and v r m s profiles for the 3 side-jets cases show distinct asymmetry, with intense OH* and low velocity fluctuations on the opposite sides of the fuel injection. It was also found that the flow and scalar fields become independent of the upstream conditions, for both 3 and 4 side-jets, after one diameter downstream of the nozzle exit.  相似文献   

5.
Assessment of three regularization-based and two eddy-viscosity-based subgrid-scale (SGS) turbulence models for large eddy simulations (LES) are carried out in the context of magnetohydrodynamic (MHD) decaying homogeneous turbulence (DHT) with a Taylor scale Reynolds number (Reλ) of 120 and a MHD transition-to-turbulence Taylor-Green vortex (TGV) problems with a Reynolds number of 3000, through direct comparisons to direct numerical simulations (DNS). Simulations are conducted using the low-magnetic Reynolds number approximation (Rem<<1). LES predictions using the regularization-based Leray- α,LANS- α, and Clark- α SGS models, along with the eddy viscosity-based non-dynamic Smagorinsky and the dynamic Smagorinsky models are compared to in-house DNS for DHT and previous results for TGV. With regard to the regularization models, this work represents their first application to MHD turbulence. Analyses of turbulent kinetic energy decay rates, energy spectra, and vorticity fields made between the varying magnetic field cases demonstrated that the regularization models performed poorly compared to the eddy-viscosity models for all MHD cases, but the comparisons improved with increase in magnitude of magnetic field, due to a decrease in the population of SGS eddies within the flow field.  相似文献   

6.
7.
In this paper, the Spectral-Element Dynamic Model (SEDM), suited for Large-Eddy Simulation (LES) using Discontinuous Finite Element Methods (DFEM), is assessed using unstructured meshes. Five test cases of increasing complexity are considered, namely, the Taylor-Green vortex at Re =?5000, the turbulent channel flow at Reτ =?587, the circular cylinder in cross-flow at ReD =?3900, the square cylinder in cross-flow at ReD =?22400 and the channel with periodic constrictions at Reh =?10595. Various discretization parameters such as the grid spacing, polynomial degree and numerical flux are assessed and very accurate results are reported in all cases. This consistency in the results demonstrates the versatility of the SEDM approach and its ability to gage the actual resolution and quality of the mesh and, accordingly, to introduce an amount of sub-grid dissipation which is adapted to the spatial discretization considered.  相似文献   

8.
A newly developed fractal dynamic SGS (FDSGS) combustion model and a scale self-recognition mixed (SSRM) SGS stress model are evaluated along with other SGS combustion, scalar flux and stress models in a priori and a posteriori manners using DNS data of a hydrogen-air turbulent plane jet premixed flame. A posteriori tests reveal that the LES using the FDSGS combustion model can predict the combustion field well in terms of mean temperature distributions and peak positions in the transverse distributions of filtered reaction progress variable fluctuations. A priori and a posteriori tests of the scalar flux models show that a model proposed by Clark et al. accurately predicts the counter-gradient transport as well as the gradient diffusion, and introduction of the model of Clark et al. into the LES yields slightly better predictions of the filtered progress variable fluctuations than that of a gradient diffusion model. Evaluations of the stress models reveal that the LES with the SSRM model predicts the velocity fluctuations well compared to that with the Smagorinsky model.  相似文献   

9.
A scale-similarity model of a two-point two-time Lagrangian velocity correlation(LVC) was originally developed for the relative dispersion of tracer particles in isotropic turbulent flows(HE, G. W., JIN, G. D., and ZHAO, X. Scale-similarity model for Lagrangian velocity correlations in isotropic and stationary turbulence. Physical Review E, 80, 066313(2009)). The model can be expressed as a two-point Eulerian space correlation and the dispersion velocity V. The dispersion velocity denotes the rate at which one moving particle departs from another fixed particle. This paper numerically validates the robustness of the scale-similarity model at high Taylor micro-scale Reynolds numbers up to 373, which are much higher than the original values(R_λ = 66, 102). The effect of the Reynolds number on the dispersion velocity in the scale-similarity model is carefully investigated. The results show that the scale-similarity model is more accurate at higher Reynolds numbers because the two-point Lagrangian velocity correlations with different initial spatial separations collapse into a universal form compared with a combination of the initial separation and the temporal separation via the dispersion velocity.Moreover, the dispersion velocity V normalized by the Kolmogorov velocity V_η≡η/τ_η in which η and τ_η are the Kolmogorov space and time scales, respectively, scales with the Reynolds number R_λ as V/V_η∝ R_λ~(1.39) obtained from the numerical data.  相似文献   

10.
The present paper is concerned with numerical investigations on the effect of inflow turbulence on the flow around a SD7003 airfoil. At a Reynolds number Rec =?60,000, an angle of attack α =?4° and a low or zero turbulence intensity of the oncoming flow, the flow past the airfoil is known to be dominated by early separation, subsequent transition and reattachment leading to a laminar separation bubble with a distinctive pressure plateau. The objective of the study is to investigate the effect of inflow turbulence on the flow behavior. For this purpose, a numerical methodology relying on a wall-resolved large-eddy simulation, a synthetic turbulence inflow generator and a specific source term concept for introducing the turbulence fluctuations within the computational domain is used. The numerical technique applied allows the variation of the free-stream turbulence intensity (TI) in a wide range. In order to analyze the influence of TI on the arising instantaneous and time-averaged flow field past the airfoil, the present study evaluates the range 0%TI ≤?11.2%, which covers typical values found in atmospheric boundary layers. In accordance with experimental studies it is shown that the laminar separation bubble first shrinks and finally completely vanishes for increasing inflow turbulence. Consequently, the aerodynamic performance in terms of the lift-to-drag ratio increases. Furthermore, the effect of the time and length scales of the isotropic inflow turbulence on the development of the flow field around the airfoil is analyzed and a perceptible influence is found. Within the range of inflow scales studied decreasing scales augment the receptivity of the boundary layer promoting an earlier transition.  相似文献   

11.
A lean premixed propane/air bluff-body stabilized flame (Volvo test rig) is calculated using the Scale-Adaptive Simulation turbulence model (SAS) and Large-Eddy simulations (LES) as well as the conventional Reynolds-averaged approach (RAS). RAS and SAS are closed by the standard k-?? and the k-ω Shear Stress Transport (SST) turbulence models, respectively. The conventional Smagorinsky and the k-equation sub-grid scales models are used for the LES closure. Effects of the sub-grid scalar flux modeling using the classical gradient hypothesis and Clark’s tensor diffusivity closures both for the inert and reactive LES flows are discussed. The Eddy Dissipation Concept (EDC) is used for the turbulence-chemistry interaction. It assumes that molecular mixing and the subsequent combustion occur in the ’fine structures’ (smaller dissipative eddies, which are close to the Kolmogorov scales). Assuming the full turbulence energy cascade, the characteristic length and velocity scales of the ’fine structures’ are evaluated using different turbulence models (RAS, SAS and LES). The finite-rate chemical kinetics is taken into account by treating the ’fine structures’ as constant pressure and adiabatic homogeneous reactors, calculated as a system of ordinary-differential equations (ODEs) described by a Perfectly Stirred Reactor (PSR) concept. Several further enhancements to model the PSRs are proposed, including a new Livermore Solver (LSODA) for integrating stiff ODEs and a new correction to calculate the PSR time scales. All models have been implemented as a stand-alone application \(\text {edcPisoFoam}\) based on the OpenFOAM technology. Additionally, several RAS calculations were performed using the Turbulence Flame Speed Closure model in Ansys Fluent to assess effects of the heat losses by modeling the conjugate heat transfer between the bluff-body and the reactive flow. Effects of the turbulence Schmidt number on RAS results are discussed as well. Numerical results are compared with available experimental data. Reasonable consistency between experimental data and numerical results provided by RAS, SAS and LES is observed. In general, there is satisfactory agreement between present LES-EDC simulations, numerical results by other authors and measurements without any major modification to the EDC closure constants, which gives a quite reasonable indication on the adequacy and accuracy of the method and its further application for turbulent premixed combustion simulations.  相似文献   

12.
We carry out Direct Numerical Simulation (DNS) of flows in closed straight ducts with complex peripheral shape. To perform the simulations the Navier-Stokes equations in cylindrical coordinates are discretized by a second-order finite difference scheme, and the immersed-boundary technique is used to resolve the flow close to walls of complex shape. The basic geometry is a circular pipe of radius R, with imposed sinusoidal perturbations of the type \(\eta R \sin (N_{w}\theta )\). Simulations by varying N w at fixed η were performed to investigate the effect of the perturbation wavenumber. Additional simulations by fixing N w and varying η also allow to investigate the influence of the amplitude of the wall corrugations. The modifications of the near-wall structures due to change in the shape of the walls are well depicted through contour plots of the radial component of the vorticity. The presence of geometrical disturbances anchors the structures at the locations where curvature changes, and the shape of the structures is strongly linked to the amplitude of the wall corrugation. Our interest is also in understanding the influence of the shape of the surface on wall friction. We were expecting some changes in the profile of the total stress with respect to that of the circular pipe, which instead were not found. This is a first indication that changes in the near-wall region do not affect the outer region, and that Townsend’s similarity hypothesis holds.  相似文献   

13.
This work aims to understand the changes associated with the near-wall streaky structures in a turbulent boundary layer (TBL) where the local skin-friction drag is substantially reduced. The Reynolds number is R e ?? = 1000 based on the momentum thickness or R e τ = 440 based on the friction velocity of the uncontrolled flow. The TBL is perturbed via a local surface oscillation produced by an array of spanwise-aligned piezo-ceramic (PZT) actuators and measurements are made in two orthogonal planes using particle image velocimetry (PIV). Data analyses are conducted using the vortex detection, streaky structure identification, spatial correlation and proper orthogonal decomposition (POD) techniques. It is found that the streaky structures are greatly modified in the near-wall region. Firstly, the near-wall streamwise vortices are increased in number and swirling strength but decreased in size, and are associated with greatly altered velocity correlations. Secondly, the velocity streaks grow in number and strength but contract in width and spacing, exhibiting a regular spatial arrangement. Other aspects of the streaky structures are also characterized; they include the spanwise gradient of the longitudinal fluctuating velocity and both streamwise and spanwise integral length scales. The POD analysis indicates that the turbulent kinetic energy of the streaky structures is reduced. When possible, our results are compared with those obtained by other control techniques such as a spanwise-wall oscillation, a spanwise oscillatory Lorentz force and a transverse traveling wave.  相似文献   

14.
The objective of this work is to verify the capabilities of a hybrid k-ω RANS/LES model for simulation of the unsteady three-dimensional flow in a ribbed duct subjected to system rotation. The Reynolds number is 15,000 and the rotation number is 0.3, both based on hydraulic diameter and bulk velocity. A correction term for system rotation is introduced into the originating k-ω RANS model. Simulation results in the mid-span section are compared with experimental data by Coletti et al. (Exp. Fluids 52:1043–1061, 2012). The comparison is complemented by analysis of the flow features in cross-sections. It is demonstrated that the hybrid k-ω RANS/LES model produces an accurate simulation of the rotating ribbed duct flow. Results are compared with those by the originating time-accurate k-ω RANS model. The k-ω RANS model is not accurate concerning secondary features in the longitudinal mean flow recirculation patterns and the secondary flow in cross-sections, but it reproduces quite well the time-averaged longitudinal flow.  相似文献   

15.
A multidimensional computational fluid dynamic code was developed and integrated with probability density function combustion model to give the detailed account of multiphase fluid flow. The vapor phase within injector domain is treated with Reynolds-averaged Navier–Stokes technique. A new parameter is proposed which is an index of plane-cut spray propagation and takes into account two parameters of spray penetration length and cone angle at the same time. It was found that spray propagation factor (SPI) tends to increase at lower r/d ratios, although the spray penetration tends to decrease. The results of SPI obtained by empirical correlation of Hay and Jones were compared with the simulation computation as a function of respective r/d ratio. Based on the results of this study, the spray distribution on plane area has proportional correlation with heat release amount, NO x emission mass fraction, and soot concentration reduction. Higher cavitation is attributed to the sharp edge of nozzle entrance, yielding better liquid jet disintegration and smaller spray droplet that reduces soot mass fraction of late combustion process. In order to have better insight of cavitation phenomenon, turbulence magnitude in nozzle and combustion chamber was acquired and depicted along with spray velocity.  相似文献   

16.
We study turbulent plane Couette-Poiseuille (CP) flows in which the conditions (relative wall velocity ΔU w ≡ 2U w , pressure gradient dP/dx and viscosity ν) are adjusted to produce zero mean skin friction on one of the walls, denoted by APG for adverse pressure gradient. The other wall, FPG for favorable pressure gradient, provides the friction velocity u τ , and h is the half-height of the channel. This leads to a one-parameter family of one-dimensional flows of varying Reynolds number Re ≡ U w h/ν. We apply three codes, and cover three Reynolds numbers stepping by a factor of two each time. The agreement between codes is very good, and the Reynolds-number range is sizable. The theoretical questions revolve around Reynolds-number independence in both the core region (free of local viscous effects) and the two wall regions. The core region follows Townsend’s hypothesis of universal behavior for the velocity and shear stress, when they are normalized with u τ and h; on the other hand universality is not observed for all the Reynolds stresses, any more than it is in Poiseuille flow or boundary layers. The FPG wall region obeys the classical law of the wall, again for velocity and shear stress. For the APG wall region, Stratford conjectured universal behavior when normalized with the pressure gradient, leading to a square-root law for the velocity. The literature, also covering other flows with zero skin friction, is ambiguous. Our results are very consistent with both of Stratford’s conjectures, suggesting that at least in this idealized flow turbulence theory is successful like it was for the classical logarithmic law of the wall. We appear to know the constants of the law within a 10% bracket. On the other hand, that again does not extend to Reynolds stresses other than the shear stress, but these stresses are passive in the momentum equation.  相似文献   

17.
The structure of autoignition in a mixing layer between fully-burnt or partially-burnt combustion products from a methane-air flame at ? = 0.85 and a methane-air mixture of a leaner equivalence ratio has been studied with transient diffusion flamelet calculations. This configuration is relevant to scavenged pre-chamber natural-gas engines, where the turbulent jet ejected from the pre-chamber may be quenched or may be composed of fully-burnt products. The degree of reaction in the jet fluid is described by a progress variable c (c = taking values 0.5, 0.8, and 1.0) and the mixing by a mixture fraction ξ (ξ = 1 in the jet fluid and 0 in the CH4-air mixture to be ignited). At high scalar dissipation rates, N0, ignition does not occur and a chemically-frozen steady-state condition emerges at long times. At scalar dissipation rates below a critical value, ignition occurs at a time that increases with N0. The flame reaches the ξ = 0 boundary at a finite time that decreases with N0. The results help identify overall timescales of the jet-ignition problem and suggest a methodology by which estimates of ignition times in real engines may be made.  相似文献   

18.
The influences of fuel Lewis number LeF on localised forced ignition of globally stoichiometric stratified mixtures have been analysed using three-dimensional compressible Direct Numerical Simulations (DNS) for cases with LeF ranging from 0.8 to 1.2. The globally stoichiometric stratified mixtures with different values of root-mean-square (rms) equivalence ratio fluctuation (i.e. ?= 0.2, 0.4 and 0.6) and the Taylor micro-scale l? of equivalence ratio ? variation (i.e. l?/lf= 2.1, 5.5 and 8.3 with lf being the Zel’dovich flame thickness of the stoichiometric laminar premixed flame) have been considered for different initial rms values of turbulent velocity u. A pseudo-spectral method is used to initialise the equivalence ratio variation following a presumed bi-modal distribution for prescribed values of ? and l?/lf for global mean equivalence ratio 〈?〉=1.0. The localised ignition is accounted for by a source term in the energy transport equation that deposits energy for a stipulated time interval. It has been observed that the maximum values of temperature and the fuel reaction rate magnitude increase with decreasing LeF during the period of external energy deposition. The initial values of LeF, u/Sb(?=1), ? and l?/lf have been found to have significant effects on the extent of burning of the stratified mixtures following localised ignition. For a given value of u/Sb(?=1), the extent of burning decreases with increasing LeF. An increase in u leads to a monotonic reduction in the burned gas mass for all values of LeF in all stratified mixture cases but an opposite trend is observed for the LeF=0.8 homogeneous mixture. It has been found that an increase in ? has adverse effects on the burned gas mass, whereas the effects of l?/lf on the extent of burning are non-monotonic and dependent on ? and LeF. Detailed physical explanations have been provided for the observed LeF, u/Sb(?=1), ? and l?/lf dependences.  相似文献   

19.
In order to experimentally study whether or not the density ratio σ substantially affects flame displacement speed at low and moderate turbulent intensities, two stoichiometric methane/oxygen/nitrogen mixtures characterized by the same laminar flame speed S L = 0.36 m/s, but substantially different σ were designed using (i) preheating from T u = 298 to 423 K in order to increase S L , but to decrease σ, and (ii) dilution with nitrogen in order to further decrease σ and to reduce S L back to the initial value. As a result, the density ratio was reduced from 7.52 to 4.95. In both reference and preheated/diluted cases, direct images of statistically spherical laminar and turbulent flames that expanded after spark ignition in the center of a large 3D cruciform burner were recorded and processed in order to evaluate the mean flame radius \(\bar {R}_{f}\left (t \right )\) and flame displacement speed \(S_{t}=\sigma ^{-1}{d\bar {R}_{f}} \left / \right . {dt}\) with respect to unburned gas. The use of two counter-rotating fans and perforated plates for near-isotropic turbulence generation allowed us to vary the rms turbulent velocity \(u^{\prime }\) by changing the fan frequency. In this study, \(u^{\prime }\) was varied from 0.14 to 1.39 m/s. For each set of initial conditions (two different mixture compositions, two different temperatures T u , and six different \(u^{\prime })\), five (respectively, three) statistically equivalent runs were performed in turbulent (respectively, laminar) environment. The obtained experimental data do not show any significant effect of the density ratio on S t . Moreover, the flame displacement speeds measured at u′/S L = 0.4 are close to the laminar flame speeds in all investigated cases. These results imply, in particular, a minor effect of the density ratio on flame displacement speed in spark ignition engines and support simulations of the engine combustion using models that (i) do not allow for effects of the density ratio on S t and (ii) have been validated against experimental data obtained under the room conditions, i.e. at higher σ.  相似文献   

20.
In this work, we consider a special choice of sliding vector field on the intersection of two co-dimension 1 manifolds. The proposed vector field, which belongs to the class of Filippov vector fields, will be called moments vector field and we will call moments trajectory the associated solution trajectory. Our main result is to show that the moments vector field is a well defined, and smoothly varying, Filippov sliding vector field on the intersection \(\Sigma \) of two discontinuity manifolds, under general attractivity conditions of \(\Sigma \). We also examine the behavior of the moments trajectory at first order exit points, and show that it exits smoothly at these points. Numerical experiments illustrate our results and contrast the present choice with other choices of Filippov sliding vector field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号