首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
We report synthesis of a series of new triarylamine‐containing AB‐type monomers and their polymers via nucleophilic aromatic substitution (SNAr) reaction. Monomers consisting of a hydroxyl group at the para position of the nitrogen group in one phenyl ring and a fluorine leaving group at the para position in another phenyl ring were synthesized via palladium‐catalyzed amination reaction. The fluorine leaving group was activated by trifluoromethyl group at the ortho position and an electron‐withdrawing group (EWG) introduced at the para position of the unsubstituted phenyl ring that enabled control over monomer reactivity. SNAr reaction of the monomers successfully produced corresponding poly(arylene ether)s with pendant EWGs that exhibited good solubility and thermal stability. Optical and electrochemical properties of the polymers were also affected by incorporation of EWGs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2692‐2702  相似文献   

2.
The bioorthogonal inverse‐electron‐demand Diels–Alder (IEDDA) cleavage reaction between tetrazine and trans‐cyclooctene (TCO) is a powerful way to control the release of bioactive agents and imaging probes. In this study, a pretargeted activation strategy using single‐walled carbon nanotubes (SWCNTs) that bear tetrazines (TZ@SWCNTs) and a TCO‐caged molecule was used to deliver active effector molecules. To optimize a turn‐on signal by using in vivo fluorescence imaging, we developed a new fluorogenic near‐infrared probe that can be activated by bioorthogonal chemistry and image tumours in mice by caging hemicyanine with TCO (tHCA). With our pretargeting strategy, we have shown selective doxorubicin prodrug activation and instantaneous fluorescence imaging in living cells. By combining a tHCA probe and a pretargeted bioorthogonal approach, real‐time, non‐invasive tumour visualization with a high target‐to‐background ratio was achieved in a xenograft mice tumour model. The combined advantages of enhanced stability, kinetics and biocompatibility, and the superior pharmacokinetics of tetrazine‐functionalised SWCNTs could allow application of targeted bioorthogonal decaging approaches with minimal off‐site activation of fluorophore/drug.  相似文献   

3.
It is a well‐known fact that by changing the 1,3‐dipolar cycloaddition (1,3‐DC) reaction mechanism from concerted to stepwise, the stereospecificity is lost; since in synthesizing the required heterocyclic molecules that reaction is a requisite, it is important to study the concertedness of that reaction. Several papers on this subject have already stated that the existence of electron withdrawing groups (EWG) or electron donor groups (EDG) on dipole or dipolarophile leads to a high‐energy differentiation between the dipole HOMO and dipolarophile LUMO (or vice versa) as well as the emergence of an intermediate in the reaction pathway. This paper seeks answering the question of when an EWG on dipole and an EDG on dipolarophile could be a factor in making the reaction mechanism stepwise, and does repositioning of functional groups in replacing dipole and dipolarophile switches the reaction mechanism from stepwise into concerted or vice versa?  相似文献   

4.
An alkene–azide 1,3‐dipolar cycloaddition between trans‐cyclooctene (TCO) and an azide‐capped hydrogel that promotes rapid gel dissolution is reported. Using an ultrashort aryl azide‐capped peptide hydrogel (PhePhe), we have demonstrated proof‐of‐concept where upon reaction with TCO, the hydrogel undergoes a gel–sol transition via 1,2,3‐triazoline degradation and 1,6‐self‐immolation of the generated aniline. The potential application of this as a general trigger in sustained drug delivery is demonstrated through release of encapsulated cargo (doxorubicin). Administration of TCO resulted in 87 % of the cargo being released in 10 h, compared to 13–14 % in the control gels. This is the first example of a potential bioorthogonal‐triggered hydrogel dissolution using a traditional click‐type reaction. This type of stimulus could be extended to other aryl azide‐capped hydrogels.  相似文献   

5.
The pre‐targeted imaging of enzyme activity has not been reported, likely owing to the lack of a mechanism to retain the injected substrate in the first step for subsequent labeling. Herein, we report the use of two bioorthogonal reactions—the condensation reaction of aromatic nitriles and aminothiols and the inverse‐electron demand Diels–Alder reaction between tetrazine and trans‐cyclooctene (TCO)—to develop a novel strategy for pre‐targeted imaging of the activity of proteases. The substrate probe ( TCO‐C‐SNAT4 ) can be selectively activated by an enzyme target (e.g. caspase‐3/7), which triggers macrocyclization and subsequent in situ self‐assembly into nanoaggregates retained at the target site. The tetrazine‐imaging tag conjugate labels TCO in the nanoaggregates to generate selective signal retention for imaging in vitro, in cells, and in mice. Owing to the decoupling of enzyme activation and imaging tag immobilization, TCO‐C‐SNAT4 can be repeatedly injected to generate and accumulate more TCO‐nanoaggregates for click labeling.  相似文献   

6.
The bioorthogonal cleavage of allylic carbamates from trans‐cyclooctene (TCO) upon reaction with tetrazine is widely used to release amines. We disclose herein that this reaction can also cleave TCO esters, carbonates, and surprisingly, ethers. Mechanistic studies demonstrated that the elimination is mainly governed by the formation of the rapidly eliminating 1,4‐dihydropyridazine tautomer, and less by the nature of the leaving group. In contrast to the widely used p‐aminobenzyloxy linker, which affords cleavage of aromatic but not of aliphatic ethers, the aromatic, benzylic, and aliphatic TCO ethers were cleaved as efficiently as the carbamate, carbonate, and esters. Bioorthogonal ether release was demonstrated by the rapid uncaging of TCO‐masked tyrosine in serum, followed by oxidation by tyrosinase. Finally, tyrosine uncaging was used to chemically control cell growth in tyrosine‐free medium.  相似文献   

7.
A convergent coupling reaction is described that enables the stereoselective construction of angularly substituted trans‐fused decalins from acyclic precursors. The process builds on our alkoxide‐directed titanium‐mediated alkyne–alkyne coupling and employs a 1,7‐enyne coupling partner. Overall, the reaction is thought to proceed through initial formation of a tetrasusbstituted metallacyclopentadiene, stereoselective intramolecular [4+2] cycloaddition, elimination, isomerization, and regio‐ and stereoselective protonation. Distinct from our early studies directed at the synthesis of trans‐fused hydrindanes, the current annulative coupling reveals an important effect of TMSCl in controlling the final protonation—the event that establishes the stereochemistry of the ring fusion.  相似文献   

8.
It has been shown previously that the reaction of diazomethane with 5‐benzylidene‐3‐phenylrhodanine ( 1 ) in THF at ?20° occurs at the exocyclic C?C bond via cyclopropanation to give 3a and methylation to yield 4 , respectively, whereas the corresponding reaction with phenyldiazomethane in toluene at 0° leads to the cyclopropane derivative 3b exclusively. Surprisingly, under similar conditions, no reaction was observed between 1 and diphenyldiazomethane, but the 2‐diphenylmethylidene derivative 5 was formed in boiling toluene. In the present study, these results have been rationalized by calculations at the DFT B3LYP/6‐31G(d) level using PCM solvent model. In the case of diazomethane, the formation of 3a occurs via initial Michael addition, whereas 4 is formed via [3+2] cycloaddition followed by N2 elimination and H‐migration. The preferred pathway of the reaction of 1 with phenyldiazomethane is a [3+2] cycloaddition, subsequent N2 elimination and ring closure of an intermediate zwitterion to give 3b . Finally, the calculations show that the energetically most favorable reaction of 1 with diphenyldiazomethane is the initial formation of diphenylcarbene, which adds to the S‐atom to give a thiocarbonyl ylide, followed by 1,3‐dipolar electrocyclization and S‐elimination.  相似文献   

9.
An unprecedented stereoselective [3+2] carbocyclization reaction of indole‐2‐carboxaldehydes, anilines, and electron‐rich alkenes to obtain cyclopenta[b]indoles is disclosed. This pathway is different from the well‐established Povarov reaction: the formal [4+2] cycloaddition involving the same components, which affords tetrahydroquinolines. Moreover, by simply changing the Brønsted acid catalyst, this multicomponent coupling process could be divergently directed towards the conventional Povarov pathway to produce tetrahydroquinolines or to the new pathway (anti‐Povarov) to generate cyclopenta[b]indoles. Supported by computational studies, a stepwise Mannich/Friedel–Crafts cascade is proposed for the new anti‐Povarov reaction, whereas a concerted [4+2] cycloaddition mechanism is proposed for the Povarov reaction.  相似文献   

10.
The electronic coupling via the cardo structure in polyfluorene (PFs) was investigated. The series of fluorene units alternatively having alkoxyphenyl as an electron‐donating group (EDG) and/or alkyl benzoate as an electron‐withdrawing group (EWG) at the cardo carbon were synthesized. From the investigation of optical properties of the polymers containing these fluorene units, it was found that the electronic states of the substituents at the cardo carbons and the PF main chains should be less influenced by the introduction of EDG and/or EWG at the cardo structure. Furthermore, these preservation effects in the cardo‐PFs were observed in the film states even after the thermal treatment. We conclude that the electronic structures of the PF main chain are highly preserved from the correlations with the substituents at the cardo carbons. This is the first example, to the best of our knowledge, to survey the systematic information on the electronic structures of the cardo‐PFs and offer the preservation effect of the optical properties from the introduction of EDGs and EWGs at the cardo carbon. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
In chromophore‐containing cyclobutane pyrimidine dimer (CPD) model systems, solvent effects on the splitting efficiency may depend on the length of the linker, the molecular conformation, and the oxidation potential of the donor. To further explore the relationship between chromophore structure and splitting efficiency, we prepared a series of substituted indole–T<>T model compounds 2 a – 2 g and measured their splitting quantum yields in various solvents. Two reverse solvent effects were observed: an increase in splitting efficiency in solvents of lower polarity for models 2 a – 2 d with an electron‐donating group (EDG), and vice versa for models 2 e – 2 g with an electron‐withdrawing group (EWG). According to the Hammett equation, the negative value of the slope of the Hammett plot indicates that the indole moiety during the T<>T‐splitting reaction loses negative charge, and the larger negative value implies that the repair reaction is more sensitive to substituent effects in low‐polarity solvents. The EDGs of the models 2 a – 2 d can delocalize the charge‐separated state, and low‐polarity solvents make it more stable, which leads to higher splitting efficiency in low‐polarity solvents. Conversely, the EWGs of models 2 e – 2 g favor destabilization of the charge‐separated state, and high‐polarity solvents decrease the destabilization and hence lead to more efficient splitting in high‐polarity solvents.  相似文献   

12.
A nitroxyl‐radical‐catalyzed oxidative coupling reaction between amines with an N‐protecting electron‐withdrawing group (EWG) and silylated nucleophiles was developed to furnish coupling products in high yields, thus opening up new frontiers in organocatalyzed reactions. This reaction proceeded through the activation of N‐halogenated amides by a nitroxyl‐radical catalyst, followed by carbon–carbon coupling with silylated nucleophiles. Studies of the reaction mechanism indicated that the nitroxyl radical activates N‐halogenated amides, which are generated from N‐EWG‐protected amides and a halogenation reagent, to give the corresponding imines.  相似文献   

13.
Gas phase reactions of the substituted phenide ions with methyl formate have been studied. It was found that the results of these reactions depend mainly on the basicity of the phenide ion, which is related to the presence of the electron‐accepting or electron‐donating substituents in the benzene ring. It was shown that the phenide ions substituted with electron‐withdrawing groups react with methyl formate in the gas phase in a two‐step reaction. The first step that proceeds according to the typical addition–elimination mechanism results in the formation of the anion of the respective benzaldehyde derivative with the negative charge located either in the aldehyde group (acyl anion) or in the benzene ring (phenide anion) in position ortho to an aldehyde moiety. In the second step, the preliminary‐formed anion reacts with the second molecule of methyl formate yielding formally product of the second addition–elimination reaction. Theoretical calculations as well as collision induced dissociation spectra of the model compounds suggest that this reaction proceeds according to the Tishchenko reaction mechanism yielding the respective phthalide anion. According to our knowledge, this is the first example of the Tishchenko‐type reaction in the gas phase. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
《合成通讯》2013,43(10):1819-1823
Abstract

The solid‐phase one step synthesis of 4H,4′‐exomethylene‐bis[quinazolin‐2‐enols] via 1,3‐dipolar cycloaddition of urea on benzylideneacetophenone using Sb(III) chloride impregnated alumina is described. The reaction provides 80–85% dimeric quniazolinenols. The process is convenient, cost‐effective and eco‐friendly.  相似文献   

15.
We herein report a chemical decaging strategy for the in situ generation of neuramic acid (Neu), a unique type of sialic acid, on live cells by the use of a palladium‐mediated bioorthogonal elimination reaction. Palladium nanoparticles (Pd NPs) were found to be a highly efficient and biocompatible depropargylation catalyst for the direct conversion of metabolically incorporated N‐(propargyloxycarbonyl)neuramic acid (Neu5Proc) into Neu on cell‐surface glycans. This conversion chemically mimics the enzymatic de‐N‐acetylation of N‐acetylneuramic acid (Neu5Ac), a proposed mechanism for the natural occurrence of Neu on cell‐surface glycans. The bioorthogonal elimination was also exploited for the manipulation of cell‐surface charge by unmasking the free amine at C5 to neutralize the negatively charged carboxyl group at C1 of sialic acids.  相似文献   

16.
An efficient metal‐free cascade reaction between 1‐dibromovinyl‐2‐nitro‐substituted arenes and secondary amines results in the formation of polycyclic pseudoindoxyls in a single step. The reaction mechanism leading to these fused ring systems was investigated, and is believed to involve the initial formation of nitroarylated ynamines/ynamides. These intermediates cycloisomerize towards N‐alkenyl‐tethered 2‐aminoisatogens via a carbene intermediate as demonstrated by QTAIM (quantum theory of atoms in molecules) and ELF (electron localization function) analysis. A subsequent intramolecular dipolar cycloaddition afforded the title compounds.  相似文献   

17.
Reductive elimination is an elementary organometallic reaction step involving a formal oxidation state change of ?2 at a transition‐metal center. For a series of formal high‐valent NiIV complexes, aryl–CF3 bond‐forming reductive elimination was reported to occur readily (Bour et al. J. Am. Chem. Soc. 2015 , 137, 8034–8037). We report a computational analysis of this reaction and find that, unexpectedly, the formal NiIV centers are better described as approaching a +II oxidation state, originating from highly covalent metal–ligand bonds, a phenomenon attributable to σ‐noninnocence. A direct consequence is that the elimination of aryl–CF3 products occurs in an essentially redox‐neutral fashion, as opposed to a reductive elimination. This is supported by an electron flow analysis which shows that an anionic CF3 group is transferred to an electrophilic aryl group. The uncovered role of σ‐noninnocence in metal–ligand bonding, and of an essentially redox‐neutral elimination as an elementary organometallic reaction step, may constitute concepts of broad relevance to organometallic chemistry.  相似文献   

18.
The bioorthogonal inverse-electron-demand Diels–Alder (IEDDA) cleavage reaction between tetrazine and trans-cyclooctene (TCO) is a powerful way to control the release of bioactive agents and imaging probes. In this study, a pretargeted activation strategy using single-walled carbon nanotubes (SWCNTs) that bear tetrazines (TZ@SWCNTs) and a TCO-caged molecule was used to deliver active effector molecules. To optimize a turn-on signal by using in vivo fluorescence imaging, we developed a new fluorogenic near-infrared probe that can be activated by bioorthogonal chemistry and image tumours in mice by caging hemicyanine with TCO (tHCA). With our pretargeting strategy, we have shown selective doxorubicin prodrug activation and instantaneous fluorescence imaging in living cells. By combining a tHCA probe and a pretargeted bioorthogonal approach, real-time, non-invasive tumour visualization with a high target-to-background ratio was achieved in a xenograft mice tumour model. The combined advantages of enhanced stability, kinetics and biocompatibility, and the superior pharmacokinetics of tetrazine-functionalised SWCNTs could allow application of targeted bioorthogonal decaging approaches with minimal off-site activation of fluorophore/drug.  相似文献   

19.
The reaction pathway of an enantioselective 5‐endotrig‐type cyclization of 3‐alkenoic acids catalyzed by a chiral palladium–spiro‐bis(isoxazoline) complex, Pd–SPRIX, has been studied by density functional theory calculations. The most plausible pathway involves intramolecular nucleophilic attack of the carboxylate moiety on the C?C double bond activated by Pd–SPRIX and β‐H elimination from the resulting organopalladium intermediate. The enantioselectivity was determined in the cyclization step through the formation of a π‐olefin complex, in which one of the two enantiofaces of the olefin moiety was selected. The β‐H elimination occurs via a seven‐membered cyclic structure in which the acetate ligand plays a key role in lowering the activation barrier of the transition state. In the elimination step, the SPRIX ligand was found to behave as a monodentate ligand due to the hemilability of one of the isoxazoline units thereby facilitating the elimination. Natural population analysis of this pathway showed that the more weakly electron‐donating SPRIX ligand, compared with the bis(oxazoline) ligand, BOX, facilitated the formation of the π‐olefin complex intermediate, leading to a smaller overall activation energy and a higher reactivity of the Pd–SPRIX catalyst.  相似文献   

20.
Theoretical calculations were performed to investigate the mechanism and enantioselectivity of cinchonine–thiourea‐catalyzed intramolecular hetero‐Diels–Alder cycloaddition of ethynylphenol derivatives to afford axial chirality naphthalenylpyran products via a vinylidene ortho‐quinone methide (VQM) intermediate. The results show that this transformation occurs through a reaction pathway involving the deprotonation of the naphthol moiety by the quinuclidine base, intramolecular proton transfer in ammonium naphthalenolate, and [4+2] cycloaddition. It is found that the axial chirality of the VQM intermediate is generated by the protonation step, which affects the enantioselectivity of the reaction. The enantioselectivity for the generation of the VQM intermediate is controlled by steric repulsion with the cinchonine framework, which provides an R‐axial chirality VQM as the major intermediate. Moreover, the enantioselectivity for the axial chirality of the naphthopyran product is controlled by the cycloaddition step, in which an extra hydrogen bond between the naphthalenol and cinchonine moieties leads to a favorable configuration for the generation of the S‐axial chirality naphthopyran product. The calculated enantioselectivity and enantiomeric excesses coincide with experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号