首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystallization of [Ag14(C?CtBu)12Cl][BF4] and different polyoxometalates in organic solvents yields a series of new intercluster compounds: [Ag14(C?CtBu)12Cl(CH3CN)]2[W6O19] ( 1 ), (nBu4N)[Ag14(C?CtBu)12Cl(CH3CN)]2[PW12O40] ( 2 ), and [Ag14(C?CtBu)12Cl]2[Ag14(C?CtBu)12Cl(CH3CN)]2[SiMo12O40] ( 3 ). Applying the same technique to a system starting from polymeric {[Ag3(C?CtBu)2][BF4]?0.6 H2O}n and the polyoxometalate (nBu4N)2[W6O19] results in the formation of [Ag14(C?CtBu)12(CH3CN)2][W6O19] ( 4 ). Here, the Ag14 cluster is generated from polymeric {[Ag3(C?CtBu)2][BF4]?0.6 H2O}n during crystallization. In a similar way, [Ag15(C?CtBu)12(CH3CN)5][PW12O40] ( 5 ) has been obtained from {[Ag3(C?CtBu)2][BF4]?0.6 H2O}n and (nBu4N)3[PW12O40]. The use of charged building blocks was intentional, because at these conditions the contribution of long‐range Coulomb interactions would benefit most from full periodicity of the intercluster compound, thus favoring formation of well‐crystalline materials. The latter has been achieved, indeed. However, as a most conspicuous feature, equally charged species aggregate, which demonstrates that the short‐range interactions between the “surfaces” of the clusters represent the more powerful structure direction forces than the long‐range Coulomb bonding. This observation is of significant importance for understanding the mechanisms underlying self‐organization of monodisperse and structurally well‐defined particles of nanometer size.  相似文献   

2.
We have investigated the coordination of alkanide and alkynide anions to the coordinatively unsaturated aluminium atoms of the methylene‐bridged dialuminium compound R2Al‐CH2‐AlR2 [ 1 , R = CH(SiMe3)2]. Treatment of 1 with the corresponding lithium derivatives in the presence of a small excess of TMEN (TMEN = tetramethylethylenediamine) yielded mono‐adducts [M]+[R2Al‐CH2‐AlR2R'] [ 2a , M = Li(TMEN)2, R' = Me; 2b , M = Li(TMEN)2, R' = n‐Bu; 3a , M = Li(TMEN)2, R' = C≡C‐SiMe3; 3b , M = Li(TMEN)2, R' = C≡C‐t‐Bu; 3d , M = Li(DME)3, R' = C≡C‐Ph; 3e , M = Li(TMEN)2, R' = C≡C‐PPh2)] and bis‐adducts [Li(TMEN)2]+[LiCH2(AlR2R')2] [ 4a , R' = C≡C‐CH2‐NEt2; 4b , R' = C≡C‐t‐Bu]. In the solid state the mono‐adducts have clearly separated coordinatively saturated (coordination number four) and unsaturated aluminium atoms (coordination number three). In solution the groups R' show a fast exchange between both aluminium atoms as evident from the room temperature NMR spectra that showed in most cases equivalent CH(SiMe3)2 groups despite different coordination spheres of the metal atoms. Only 2b gave the expected splitting of resonances at ambient temperature, while cooling was required to prevent the dynamic process for 3a . The dialkynide 4a has a unique molecular structure with one of the lithium cations bonded to the α‐carbon atoms of the alkynido ligands and to the carbon atom of the methylene bridge which is five‐coordinate with a distorted trigonal bipyramidal coordination sphere.  相似文献   

3.
The X-ray structural study of the reaction product of equimolar amounts of [Au3Cu2(C2Ph)6]. [{Au(C2Ph)} n ], and [Ag(C2Ph)} n ] revealed two bimetallic anionic [N(PPh3)2] + [Au3Ag2(C2Ph)6] and [N(PPh3)2]+[Au3Cu2 (C2 Pg)6] — clusters co-crystallized in one asymmetric unit. Each cluster has trigonal bipyramidal geometry with three gold atoms occupying equatorial planes and two silver or copper atoms in the apical positions. Our earlier conclusion based upon spectroscopic characterization describing the product of be above reaction as trimetallic cluster containing three coinage-metals with an overall composition [Au3CuAg(C2Ph)6], was erroneous.Presented at the 210th ACS Meeting, August 19–24, 1995, Chicago, Illinois.  相似文献   

4.
Reaction of bisalkylidyne cluster compounds [Fe3(CO)93‐CR)2] ( 1a—d ) ( a , R = H; b , R = F; c , R = Cl; d , R = Br) with the phosphaalkyne t‐C4H9‐C≡P ( 2 ) yield a single isomer of the phosphaferrole cluster [Fe3(CO)8][CR‐C(t‐Bu)‐P‐CR] ( 3a—d ). However, the three isomeric compounds [Fe3(CO)8][C(OEt)‐C(t‐Bu)‐P‐C(Me)] ( 5a ), [Fe3(CO)8][C(Me)‐C(t‐Bu)‐P‐C(OEt)] ( 5b ), and [Fe3(CO)8][C(OEt)‐C(Me)‐C(t‐Bu)‐P] ( 5c ) are obtained in the reaction of [Fe3(CO)93‐CMe)(μ3‐C‐OEt)] ( 4 ) with 2 . As the phosphaferroles 3 possess a lone pair of electrons at the phosphorus atom they can act as ligands. [Fe3(CO)8][CF‐C(t‐Bu)‐P‐CF]MLn ( 7a—c ) ( a , MLn = Cr(CO)5; b , MLn = CpMn(CO)2; c , MLn = Cp*Mn(CO)2) were formed from 3b and LnM(η2‐C8H14) ( 6a—c ). The dinuclear cluster [Fe2(CO)6][CF‐CF‐C(t‐Bu)‐PH(OMe)] ( 8 ) was obtained from 3b and NiCl2·6H2O in methanol. The structures of 3a—d , 5a—c , 7b , and 8 have been elucidated by X‐ray crystal structure determinations.  相似文献   

5.
Two homoleptic alkynyl‐protected gold clusters with compositions of Na[Au25(C≡CAr)18] and (Ph4P)[Au25(C≡CAr)18] (Na? 1 and Ph4P? 1 , Ar=3,5‐bis(trifluoromethyl)phenyl) were synthesized via a direct reduction method. 1 is a magic cluster analogous to [Au25(SR)18]? in terms of electron counts and metal‐to‐ligand ratio. Single‐crystal structure analysis reveals that 1 has an identical Au13 kernel to [Au25(SR)18]?, but adopts a distinctly different arrangement of the six peripheral dimer staple motifs. The steric hindrance of alkynyl ligands is responsible for the D3 arrangement of Au25. The introduction of alkynyl also significantly changes the optical absorption features of the nanocluster as supported by DFT calculations. This magic cluster confirms that there is a similar but quite different parallel alkynyl‐protected metal cluster universe in comparison to the thiolated one.  相似文献   

6.
The title compound, tetra­carbonyl‐1κ4C‐tris­(tri­phenyl­phos­phino)‐1κP,2κP,3κPtriangulo‐chromiumdigold(AuAu)(2 CrAu) tetra­hydro­furan solvate, [Au2Cr(C18H15P)3(CO)4]·C4H8O, is a stable isolobal analogue of the extremely labile [(η2‐H2)CrLn–1] molecular hydrogen complex (n = 6; L is a neutral ligand, e.g. CO or PPh3), and features the shortest known separation [2.6937 (2) Å] between two Au atoms in a triangular heteronuclear metal‐cluster framework.  相似文献   

7.
A red–near‐IR dual‐emissive nanocluster with the composition [Au10Ag2(2‐py?C≡C)3(dppy)6](BF4)5 ( 1 ; 2‐py?C≡C is 2‐pyridylethynyl, dppy=2‐pyridyldiphenylphosphine) has been synthesized. Single‐crystal X‐ray structural analysis reveals that 1 has a trigonal bipyramidal Au10Ag2 core that contains a planar Au4(2‐py?C≡C)3 unit sandwiched by two Au3Ag(dppy)3 motifs. Cluster 1 shows intense red–NIR dual emission in solution. The visible emission originates from metal‐to‐ligand charge transfer (MLCT) from silver atoms to phosphine ligands in the Au3Ag(dppy)3 motifs, and the intense NIR emission is associated with the participation of 2‐pyridylethynyl in the frontier orbitals of the cluster, which is confirmed by a time‐dependent density functional theory (TD‐DFT) calculation.  相似文献   

8.
Abstract. The five‐membered heteroelement cluster THF · Cl2In(OtBu)3Sn reacts with the sodium stannate [Na(OtBu)3Sn]2 to produce either the new oxo‐centered alkoxo cluster ClInO[Sn(OtBu)2]3 ( 1 ) (in low yield) or the heteroleptic alkoxo cluster Sn(OtBu)3InCl3Na[Sn(OtBu)2]2 ( 2 ). X‐ray diffraction analyses reveal that in compound 1 the polycyclic entity is made of three tin atoms which together with a central oxygen atom form a trigonal, almost planar triangle, perpendicular to which a further indium atom is connected through the oxygen atom. The metal atoms thus are arranged in a Sn3In pyramid, the edges of which are all saturated by bridging tert‐butoxy groups. The indium atom has a further chloride ligand. Compound 2 has two trigonal bipyramids as building blocks which are fused together at a six coordinate indium atom. One of the bipyramids is of the type SnO3In with tert‐butyl groups on the oxygen atoms, while the other has the composition InCl3Na with chlorine atoms connecting the two metals. The sodium atom in 2 has further contacts to two plus one alkoxide groups which are part of a[Sn(OtBu)2]2 dimer disposing of a Sn2O2 central cycle. The hetero element cluster in 2 thus combines three closed entities and its skeleton SnO3InCl3NaO2Sn2O2 consists of three different metallic and two different non‐metallic elements.  相似文献   

9.
An alkynyl‐protected gold nanocluster, Au22(tBuC≡C)18 ( 1 ), has been synthesized and its structure has been determined by single‐crystal X‐ray diffraction. The molecular structure consists of a Au13 cuboctahedron kernel and three [Au3(tBuC≡C)4] trimeric staples. The cluster 1 has strong luminescence in the solid state with a 15 % quantum yield, and it displays interesting thermochromic luminescence as revealed by temperature‐dependent emission spectra. The enhanced room‐temperature emission is characterized as thermally activated delayed fluorescence.  相似文献   

10.
Synthesis and Crystal Structure of the Nitrido Complexes [(n‐Bu)4N]2[{(L)Cl4Re≡N}2PtCl2] (L = THF und H2O) and [(n‐Bu)4N]2[(H2O)Cl4Re≡N‐PtCl(μ‐Cl)]2 The threenuclear complex [(n‐Bu)4N]2[{(THF)Cl4Re≡N}2—PtCl2] ( 1a ) is obtained by the reaction of [(n‐Bu)4N][ReNCl4] with [PtCl2(C6H5CN)2] in THF/CH2Cl2. It forms red crystals with the composition 1a · 2 CH2Cl2 crystallizing in the tetragonal space group I41/a with a = 3186.7(2); c = 1311.2(1) pm and Z = 8. If the reaction of the educts is carried out without THF, however under exposure to air the compound [(n‐Bu)4N]2[{(H2O)Cl4Re≡N}2PtCl2] ( 1b ) is obtained as red trigonal crystals with the space group R3 and a = 3628.3(3), c = 1231.4(1) pm and Z = 9. In the centrosymmetric complex anions [{(L)Cl4Re≡N}2PtCl2]2— a linear PtCl2moiety is connected in a trans arrangement with two complex fragments [(L)Cl4Re≡N] via asymmetric nitrido bridges Re≡dqN‐Pt. For PtII such results a square‐planar coordination PtCl2N2. The linear nitrido bridges are characterized by distances Re‐N = 169.5 pm and Pt‐N = 188.8 pm ( 1a ), respectively, Re‐N = 165.6 pm and Pt‐N = 194.1 pm ( 1b ). By the reaction of [(n‐Bu)4N][ReNCl4] with PtCl4 in CH2Cl2 platinum is reduced forming the heterometallic ReVI/PtII complex, [(n‐Bu)4N]2[(H2O)Cl4Re≡N‐PtCl(μ‐Cl)]2 ( 2 ). It crystallizes in the monoclinic space group C2/c with a = 2012.9(1); b = 1109.0(2); c = 2687.4(4) pm; β = 111.65(1)° and Z = 4. In the central unit ClPt(μ‐Cl)2PtCl of the anionic complex [(H2O)Cl4Re≡N‐PtCl(μ‐Cl)]22— with the symmetry C2 the coordination of the Pt atoms is completed by two nitrido bridges Re≡N‐Pt to nitrido complex fragments [(H2O)Cl4Re≡N] forming a square‐planar arrangement for the Pt atoms. The distances in the linear nitrido bridges are Re‐N = 165.9 pm and Pt‐N = 190.1 pm.  相似文献   

11.
Silver chalcogenolate cluster assembled materials (SCAMs) are a category of promising light‐emitting materials the luminescence of which can be modulated by variation of their building blocks (cluster nodes and organic linkers). The transformation of a singly emissive [Ag12(SBut)8(CF3COO)4(bpy)4]n (Ag12bpy, bpy=4,4′‐bipyridine) into a dual‐emissive [(Ag12(SBut)6(CF3COO)6(bpy)3)]n (Ag12bpy‐2) via cluster‐node isomerization, the critical importance of which was highlighted in dictating the photoluminescence properties of SCAMs. Moreover, the newly obtained Ag12bpy‐2 served to construct visual thermochromic Ag12bpy‐2/NH2 by a mixed‐linker synthesis, together with dichromatic core–shell Ag12bpy‐2@Ag12bpy‐NH2‐2 via solvent‐assisted linker exchange. This work provides insight into the significance of metal arrangement on physical properties of nanoclusters.  相似文献   

12.
The title compound, (C11H22N3)[FeCl3(C11H21N3)], is one of the rare examples where an isolated ionic pair of the type [A]n+[EMX3]n (E is any non‐metal, M is any transition metal and X is any halogen) could be structurally characterized. Two short N—H⋯Cl contacts between the two ammonium H atoms and two of the three Cl atoms of the counter‐anion generate a six‐membered ring. The third Cl atom is involved in a weaker intra­molecular hydrogen bond to the neutral 1,3‐diisopropyl‐4,5‐dimethyl‐4‐imidazolin‐2‐yl­idene­amine ligand.  相似文献   

13.
The complex series [Ru(pap)(Q)2]n ([ 1 ]n–[ 4 ]n; n=+2, +1, 0, ?1, ?2) contains four redox non‐innocent entities: one ruthenium ion, 2‐phenylazopyridine (pap), and two o‐iminoquinone moieties, Q=3,5‐di‐tert‐butyl‐N‐aryl‐1,2‐benzoquinonemonoimine (aryl=C6H5 ( 1+ ); m‐(Cl)2C6H3 ( 2+ ); m‐(OCH3)2C6H3 ( 3+ ); m‐(tBu)2C6H3 ( 4 +)). A crystal structure determination of the representative compound, [ 1 ]ClO4, established the crystallization of the ctt‐isomeric form, that is, cis and trans with respect to the mutual orientations of O and N donors of two Q ligands, and the coordinating azo N atom trans to the O donor of Q. The sensitive C? O (average: 1.299(3) Å), C? N (average: 1.346(4) Å) and intra‐ring C? C (meta; average: 1.373(4) Å) bond lengths of the coordinated iminoquinone moieties in corroboration with the N?N length (1.292(3) Å) of pap in 1 + establish [RuIII(pap0)(Q.?)2]+ as the most appropriate electronic structural form. The coupling of three spins from one low‐spin ruthenium(III) (t2g5) and two Q.? radicals in 1 +– 4 + gives a ground state with one unpaired electron on Q.?, as evident from g=1.995 radical‐type EPR signals for 1 +– 4 +. Accordingly, the DFT‐calculated Mulliken spin densities of 1 + (1.152 for two Q, Ru: ?0.179, pap: 0.031) confirm Q‐based spin. Complex ions 1 +– 4 + exhibit two near‐IR absorption bands at about λ=2000 and 920 nm in addition to intense multiple transitions covering the visible to UV regions; compounds [ 1 ]ClO4–[ 4 ]ClO4 undergo one oxidation and three separate reduction processes within ±2.0 V versus SCE. The crystal structure of the neutral (one‐electron reduced) state ( 2 ) was determined to show metal‐based reduction and an EPR signal at g=1.996. The electronic transitions of the complexes 1 n– 4 n (n=+2, +1, 0, ?1, ?2) in the UV, visible, and NIR regions, as determined by using spectroelectrochemistry, have been analyzed by TD‐DFT calculations and reveal significant low‐energy absorbance (λmax>1000 nm) for cations, anions, and neutral forms. The experimental studies in combination with DFT calculations suggest the dominant valence configurations of 1 n– 4 n in the accessible redox states to be [RuIII(pap0)(Q.?)(Q0)]2+ ( 1 2+– 4 2+)→[RuIII(pap0)(Q.?)2]+ ( 1 +– 4 +)→[RuII(pap0)(Q.?)2] ( 1 – 4 )→[RuII(pap.?)(Q.?)2]? ( 1 ?– 4 ?)→[RuIII(pap.?)(Q2?)2]2? ( 1 2?– 4 2?).  相似文献   

14.
The complexes [Au3(dcmp)2][X]3 {dcmp=bis(dicyclohexylphosphinomethyl)cyclohexylphosphine; X=Cl? ( 1 ), ClO4? ( 2 ), OTf? ( 3 ), PF6? ( 4 ), SCN?( 5 )}, [Ag3(dcmp)2][ClO4]3 ( 6 ), and [Ag3(dcmp)2Cl2][ClO4] ( 7 ) were prepared and their structures were determined by X‐ray crystallography. Complexes 2 – 4 display a high‐energy emission band with λmax at 442–452 nm, whereas 1 and 5 display a low‐energy emission with λmax at 558–634 nm in both solid state and in dichloromethane at 298 K. The former is assigned to the 3[5dσ*6pσ] excited state of [Au3(dcmp)2]3+, whereas the latter is attributed to an exciplex formed between the 3[5dσ*6pσ] excited state of [Au3(dcmp)2]3+ and the counterions. In solid state, complex [Ag3(dcmp)2][ClO4]3 ( 6 ) displays an intense emission band at 375 nm with a Stokes shift of ≈7200 cm?1 from the 1[4dσ*→5pσ] absorption band at 295 nm. The 375 nm emission band is assigned to the emission directly from the 3[4dσ*5pσ] excited state of 6 . Density functional theory (DFT) calculations revealed that the absorption and emission energies are inversely proportional to the number of metal ions (n) in polynuclear AuI and AgI linear chain complexes without close metal???anion contacts. The emission energies are extrapolated to be 715 and 446 nm for the infinite linear AuI and AgI chains, respectively, at metal???metal distances of about 2.93–3.02 Å. A QM/MM calculation on the model [Au3(dcmp)2Cl2]+ system, with Au???Cl contacts of 2.90–3.10 Å, gave optimized Au???Au distances of 2.99–3.11 Å in its lowest triplet excited state and the emission energies were calculated to be at approximately 600–690 nm, which are assigned to a three‐coordinate AuI site with its spectroscopic properties affected by AuI???AuI interactions.  相似文献   

15.
Synthesis of atom‐precise alloy nanoclusters with uniform composition is challenging when the alloying atoms are similar in size (for example, Ag and Au). A galvanic exchange strategy has been devised to produce a compositionally uniform [Ag24Au(SR)18]? cluster (SR: thiolate) using a pure [Ag25(SR)18]? cluster as a template. Conversely, the direct synthesis of Ag24Au cluster leads to a mixture of [Ag25?xAux(SR)18]?, x=1–8. Mass spectrometry and crystallography of [Ag24Au(SR)18]? reveal the presence of the Au heteroatom at the Ag25 center, forming Ag24Au. The successful exchange of the central Ag of Ag25 with Au causes perturbations in the Ag25 crystal structure, which are reflected in the absorption, luminescence, and ambient stability of the particle. These properties are compared with those of Ag25 and Ag24Pd clusters with same ligand and structural framework, providing new insights into the modulation of cluster properties with dopants at the single‐atom level.  相似文献   

16.
The first 4π‐electron resonance‐stabilized 1,3‐digerma‐2,4‐diphosphacyclobutadiene [LH2Ge2P2] 4 (LH=CH[CHNDipp]2 Dipp=2,6‐iPr2C6H3) with four‐coordinate germanium supported by a β‐diketiminate ligand and two‐coordinate phosphorus atoms has been synthesized from the unprecedented phosphaketenyl‐functionalized N‐heterocyclic germylene [LHGe‐P=C=O] 2 a prepared by salt‐metathesis reaction of sodium phosphaethynolate (P≡C?ONa) with the corresponding chlorogermylene [LHGeCl] 1 a . Under UV/Vis light irradiation at ambient temperature, release of CO from the P=C=O group of 2 a leads to the elusive germanium–phosphorus triply bonded species [LHGe≡P] 3 a , which dimerizes spontaneously to yield black crystals of 4 as isolable product in 67 % yield. Notably, release of CO from the bulkier substituted [LtBuGe‐P=C=O] 2 b (LtBu=CH[C(tBu)N‐Dipp]2) furnishes, under concomitant extrusion of the diimine [Dipp‐NC(tBu)]2, the bis‐N,P‐heterocyclic germylene [DippNC(tBu)C(H)PGe]2 5 .  相似文献   

17.
A New Aluminum/Nickel/Oxo‐Cluster: [Ni(acac)OAl(OtBu)2]4 When bis(tert‐butoxy)alane (tBu‐O)2AlH is allowed to react with nickeldiacetylacetonate at elevated temperature a new nickel/aluminum/oxo cluster [Ni(acac)OAl(OtBu)2]4 is formed together with aluminum acetylacetonate Al(acac)3 and some other products. The metal/oxo cluster is isolated by crystallization and structurally fully characterized by X‐ray diffraction analysis. The molecule [Ni(acac)OAl(OtBu)2]4 contains an eight membered Al4O4 cycle, to which eight mutually edge sharing NiO2Al cycles are fused. The overall point symmetry of the metal/oxo cluster is almost S4. While the aluminum atoms are tetrahedrally surrounded by oxygen ligands (mean distances Al‐O in‐between 1, 730(6) and 1, 789(6) Å)), the nickel atoms are in a square pyramidal coordination sphere of oxygen atoms (Ni‐Oaxial = 1.938(6) Å, Ni‐Obasal = 2.056(9) Å; all polyhedra are distorted). The nickel atoms have a d8 high spin electron configuration (μeff = 3.32 B.M.).  相似文献   

18.
A novel discrete open high‐nuclearity nest‐like silver thiolate cluster complex, [Ag33S3(StBu)16(CF3COO)9(NO3)(CH3CN)2](NO3) ( 1 ), has been isolated with nitrate and S2? anions acting as structure‐directing templates. Its similar nest‐like structure has been assembled into an extended layer [Ag31S3(StBu)16(NO3)9]n ( 2 ) by adjustment of auxiliary ligand. More interestingly, both complexes exhibit temperature‐dependent luminescence of high sensitivity with a large fluorescence enhancement (12‐fold for 1 , 21‐fold for 2 ), which can be easily recognized by the naked‐eye (dramatic red‐shift Δ=104 nm for 1 , larger Δ=113 nm for 2 at 77 K compared to those at 298 K). The correlation between luminescent thermochromism and temperature‐dependent variation of the coordination modes of template NO3? anion, Ag???S and Ag???Ag distances are also elucidated through variable‐temperature single‐crystal X‐ray crystal structure (VT‐SCXRD) analyses.  相似文献   

19.
Atomically precise alloying and de‐alloying processes for the formation of Ag–Au and Cu–Au nanoparticles of 25‐metal‐atom composition (referred to as AgxAu25?x(SR)18 and CuxAu25?x(SR)18, in which R=CH2CH2Ph) are reported. The identities of the particles were determined by matrix‐assisted laser desorption ionization mass spectroscopy (MALDI‐MS). Their structures were probed by fragmentation analysis in MALDI‐MS and comparison with the icosahedral structure of the homogold Au25(SR)18 nanoparticles (an icosahedral Au13 core protected by a shell of Au12(SR)18). The Cu and Ag atoms were found to preferentially occupy the 13‐atom icosahedral sites, instead of the exterior shell. The number of Ag atoms in AgxAu25?x(SR)18 (x=0–8) was dependent on the molar ratio of AgI/AuIII precursors in the synthesis, whereas the number of Cu atoms in CuxAu25?x(SR)18 (x=0–4) was independent of the molar ratio of CuII/AuIII precursors applied. Interestingly, the CuxAu25?x(SR)18 nanoparticles show a spontaneous de‐alloying process over time, and the initially formed CuxAu25?x(SR)18 nanoparticles were converted to pure Au25(SR)18. This de‐alloying process was not observed in the case of alloyed AgxAu25?x(SR)18 nanoparticles. This contrast can be attributed to the stability difference between CuxAu25?x(SR)18 and AgxAu25?x(SR)18 nanoparticles. These alloyed nanoparticles are promising candidates for applications such as catalysis.  相似文献   

20.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号